Stereotactic Ablative Radiotherapy (SABR) of lung tumors: A pictorial review

Arash Bedayat, MD
Donato Terrone, MD
Max Diehn, MD
Bill Loo Jr, MD
Ann Leung, MD
H. Henry Guo, MD, PhD
Stanford University Medical Center
Disclosure

• Authors have no relevant financial relationships with the manufacturers of any commercial products and/or providers of commercial services

• We do not intend to discuss an unapproved use of a commercial product/device in this presentation
Teaching points

- Review cross sectional findings of post SABR pulmonary neoplasms
- Direct comparison of imaging findings with PET/CT findings
- Discuss pearls and pitfalls in accurately diagnosing and residual/recurrent tumors and mimics

Table of contents/outline

- General overview of stereotactic ablative radiotherapy (SABR)
- Describe the cross sectional and PET/CT features of recurrent/residual tumors and their mimics
- Identify the imaging and non-imaging features of each that may allow differentiation from others.
- Discuss the diagnostic pitfalls and management of the discussed entities.
Lung cancer

- Higher prevalence in white males and females
- 2 out of 3 patients older than 65
- Less than 2% younger than 45
- Average age 70
- Each year more people die of lung cancer than of colon, breast, and prostate cancers combined

- Leading cause of cancer mortality.
- 29% and 26% of all cancer deaths in men and women.
- Main cell types: Adenocarcinoma, Small cell, Large cell, and SCC
- Life time risk: 1 in 14 for male; 1 in 17 for female
- Risk factor: Smoking
Stereotactic Ablative Radiotherapy (SABR)

- also known as Stereotactic Body Radiotherapy (SBRT)
- Advocated for treatment for T1N0 or T2N0 non-small cell lung cancer
- Conveys high dose of radiation to a small focus in the body
- 90% local control rate
- Disease recurrence post-SABR occurs in the first 3 years post treatment
- 0% 30-day mortality after SABR in patients with severe COPD, versus 10% mortality after surgery

SABR: Inoperable stage I NSCLC

Computer optimized beam shaping & arc delivery
SABR for Inoperable stage I NSCLC

Inverse planned arc SABR
SABR versus older radiotherapy techniques

- Faster treatment course, 1-2 weeks versus 4-6 weeks
- 18 Gray per day versus 2 Gray per day
- Target dose 60 Gray
- More patient satisfaction and comfort
- Less cost
- Greater survival rate

Respiratory-gated arc SABR
Post SABR CHEST CT and PET/CT Findings

- Variable, but parenchymal changes generally visible in 2-3 months following radiation
- First manifestation: tumor shrinkage
- Most common: ground glass and consolidation
- Progression to contraction and fibrosis
- Initial increased FDG uptake, greater than lung background, with decreased tumor uptake, followed by peak diffuse FDG uptake in irradiated area, with gradual subsequent decrease in FDG uptake
Imaging Features of Local Recurrence

<table>
<thead>
<tr>
<th>Suspicious Feature on CT</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enlarging opacity at primary site</td>
<td>92%</td>
<td>67%</td>
</tr>
<tr>
<td>Sequential enlargement</td>
<td>67%</td>
<td>100%</td>
</tr>
<tr>
<td>Enlargement after 12 months</td>
<td>100%</td>
<td>83%</td>
</tr>
<tr>
<td>Bulging margins</td>
<td>83%</td>
<td>83%</td>
</tr>
<tr>
<td>Linear margin disappearance</td>
<td>42%</td>
<td>100%</td>
</tr>
<tr>
<td>Loss of air bronchograms</td>
<td>67%</td>
<td>96%</td>
</tr>
<tr>
<td>Cranio-caudal growth of >5mm and >20%</td>
<td>92%</td>
<td>83%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Suspicious Feature on PET-CT</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUV max > 4.2</td>
<td>100%</td>
<td>96%</td>
</tr>
<tr>
<td>Focal uptake 1.5x greater than background</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Huang et al. Radiotherapy Oncology 2013
Takeda et al. Lung Cancer 2013
Post radiation evolution,
axial plane

Pre-treatment

2 months

6 months

9 months

12 months

16 months
Post radiation evolution, coronal plane

Pre: Pre-treatment
2 months
6 months

9 months
12 months
16 months
Baseline tumor was mildly avid (SUV max 1.7). Peak consolidation was at 5 months post SABR (SUV max 2.7). At 29 months the FDG-avidity has decreased to an SUV max of 2.0. On CT at 29 months the consolidation has contracted, consistent with fibrotic changes.
SABR: Side-effects and Complications

- Fatigue
- Chest wall pain
- Rib fracture
- Diffuse Radiation pneumonitis
- Esophagitis
- Local Recurrence reported in up to 10%
SABR complication: Rib Fractures

11 months

14 months
Complications:
Diffuse Radiation Pneumonitis

- Graded into 1-4 based on clinical severity
- Treated with steroids, oxygen, hospitalization
- Imaging Findings: Ground glass opacities and consolidations
- COPD protective against radiation pneumonitis
 - Odds ratio of 0.37 of RP for patients with severe COPD (GOLD 3 & 4) compared to patients without COPD [2]
- Increased risk for RP among those with:
 - Interstitial lung disease: severe or fatal RP in 26% [3]
 - Large tumors (> 80 cc)

Diffuse Post-Radiation Pneumonitis

Baseline

1 week

4 months

4 months
Local Recurrence: cranial caudal growth

Baseline

3 months

15 months

34 months

11 months

34 months
Local Recurrence Detected on CT and PET-CT

Mildly FDG-avid baseline tumor (SUV max 1.7). At 15 months, CT displays evidence of enlarging opacity while PET-CT shows a new hypermetabolic focus within the enlarging consolidation (SUV max 9.1). Subsequent biopsy revealed recurrent local disease.
False Negative CT for Recurrence

CT 14 months post SABR shows non-specific consolidation and volume loss, while PET-CT shows a new intensely FDG-avid focus within the consolidation (SUV max 8.5), consistent with subsequently biopsy-proven local recurrence.
Local Recurrence:
Positive on CT, Negative on PET-CT

Baseline tumor is non-FDG avid (SUV max 0.6). Follow-up PET-CTs at 9 and 17 months show no FDG-avidity within the consolidation. CT at 17 months shows enlarging opacity that on biopsy was proven to represent local recurrence.
PET/CT, CT or both?

- PET-CT has limited role in surveillance of tumors of baseline low FDG-avidity. Infection/inflammatory disease lowers specificity of FDG PET-CT.

- PET-CT is useful to identify nodal or distant metastases, which can be occult on CT.

- CT and PET-CT are complementary modalities and may maximize sensitivity in detection of post-SABR recurrence of NSCLC.

- Further studies are required to establish recommendations for CT and PET-CT to maximize early detection of recurrence.

- Novel techniques such as quantitative image analysis are currently being studied as potential alternatives.
Summary

- SABR/SBRT is an established therapy for early stage lung cancer in poor surgical candidates, particularly those with COPD.
- Likely will be increasingly used to treat lung cancer screening CT detected cancers.
- Post-radiation changes can be variable, but follow general trend of focal ground-glass/consolidation and progression to fibrosis.
- Local recurrence reported in up to 10%.
 - CT: increasing size after 12 months, loss of air bronchograms, increasing cranial-caudal dimension >20%.
 - PET-CT: Increasing SUVmax >4.2, Increasing focal SUVmax > 1.5x background.
- PET-CT can be very helpful in workup.
Selected references

Thank You!
Arash Bedayat, MD
abedayat@Stanford.edu