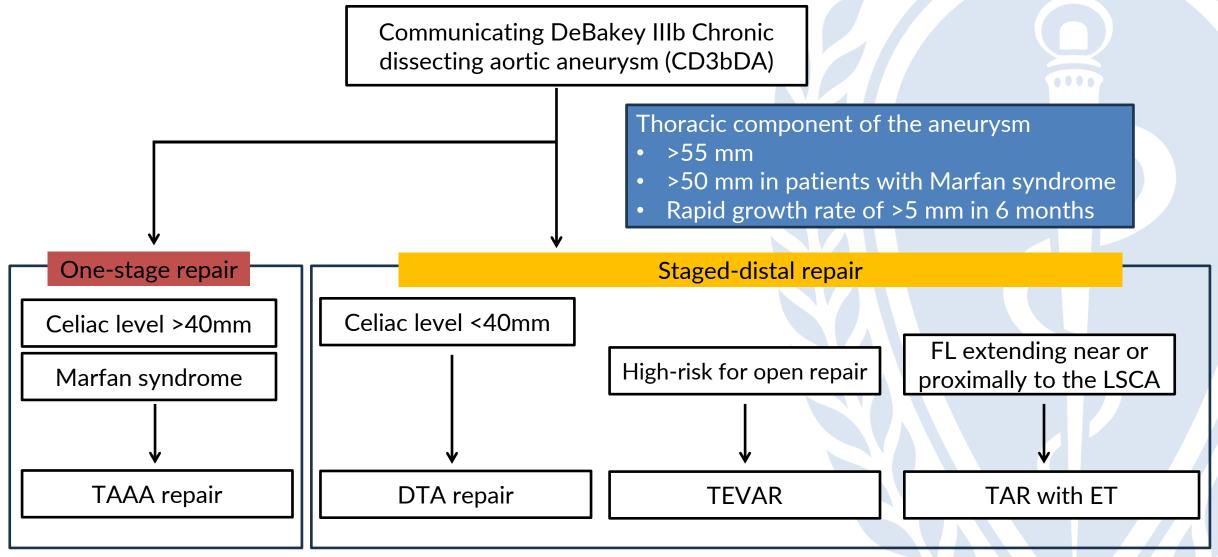


Sapporo Medical University, Department of Cardiovascular Surgery

The 2024 American Association for Thoracic Surgery Aortic Symposium

Long-term Outcomes of Primary Surgical Repair for Communicating DeBakey IIIb Chronic Dissecting Aortic Aneurysm

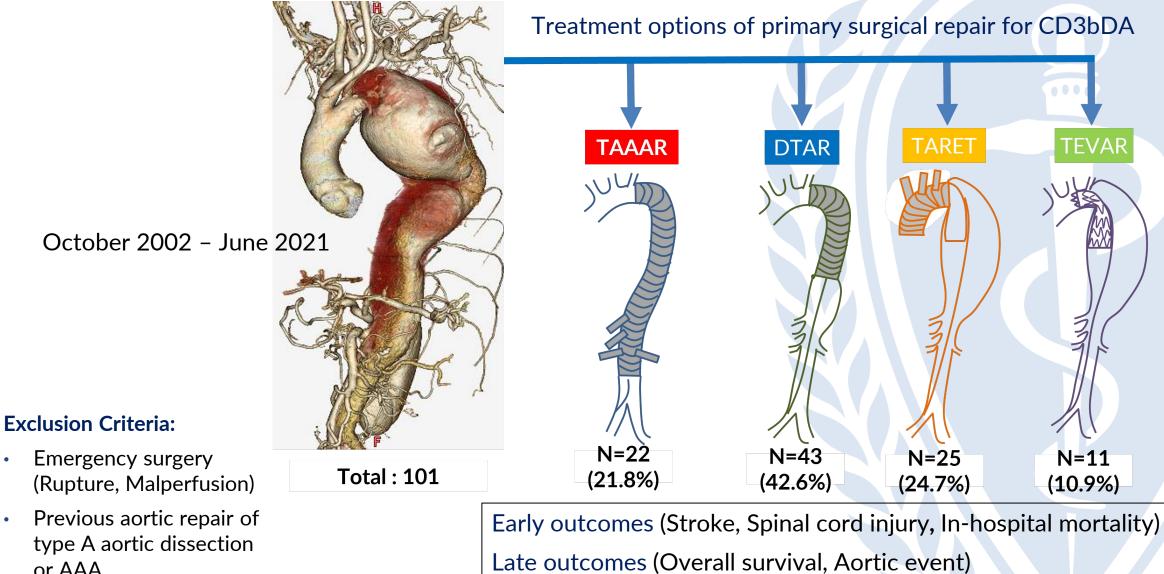

<u>Shuhei Miura</u>, Kei Mukawa, Keitaro Nakanishi, Takakimi Mizuno, Ayaka Arihara, Tsuyoshi Shibata, Junji Nakazawa, Tomohiro Nakajima, Yutaka Iba, Nobuyoshi Kawaharada

Sapporo Medical University, Department of Cardiovascular surgery

Objectives

- Comprehensive surgical strategies are required for communicating DeBakey IIIb chronic dissecting aortic aneurysm (CD3bDA) in which dissection extends below the visceral arteries.
- Although the treatment of CD3bDA includes several primary surgical repairs to reduce the invasiveness, the optimal option remains controversial.
- The aim of this study was to evaluate the 20-year long-term surgical outcomes for CD3bDA and consider the optimal primary treatment option to prevent the incidence of aortic events.

Surgical Strategy for CD3bDA

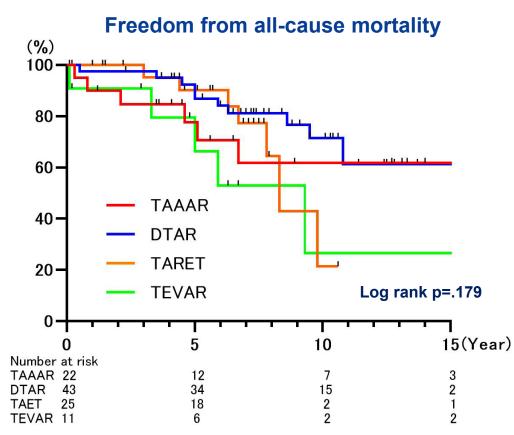


Patient and methods

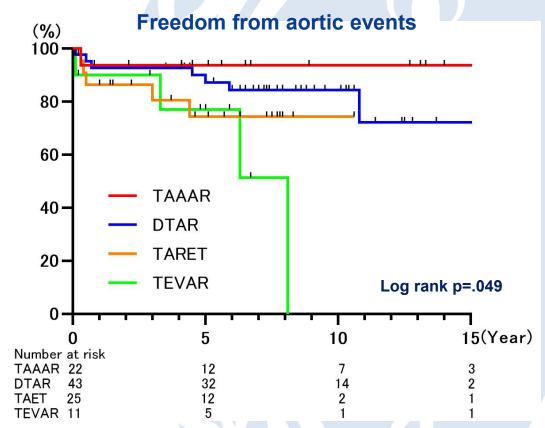
٠

•

or AAA

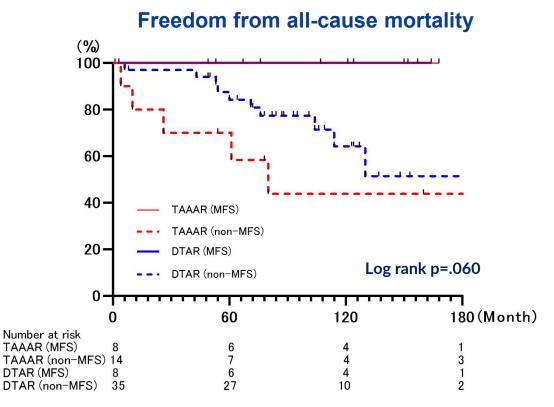

Patient characteristics by primary surgical repair

Variable	Total (n=101)	TAAAR (n=22)	DTAR (n=43)	TARET (n=25)	TEVAR (n=11)	P value
Interval from onset (month)	64.3±10.6	54.7±25.4	77.9±18.2	48.8±26.1	60.2±34.0	0.785
Aneurysm diameter (mm)	58.5±10.6	60.2±11.5	58.6±10.8	59.3±8.4	56.6±11.7	0.255
Age (year)	59.4±13.7	55.1±15.5	58.1±12.9	62.8±13.4	65.6±10.9	0.092
Gender (male)	84 (83.2)	19 (86.4)	34 (79.1)	22 (88.0)	9 (81.8)	0.775
Marfan syndrome	19 (18.8)	8 (36.4)	8 (18.6)	3 (12.0)	O (O)	0.027
Hypertension	79 (78.2)	17 (77.3)	35 (81.4)	16 (64.0)	11 (100.0)	0.098
Diabetes mellitus	8 (7.9)	3 (13.6)	5 (11.6)	O (O)	O (O)	0.180
CKD (creatinine>1.5 mg/dl)	9 (8.9)	2 (9.1)	3 (7.0)	2 (8.0)	2 (18.2)	0.708
LVEF (%)	62.3±3.7	63.0±2.1	60.8±2.9	61.3±3.1	59.9±2.6	0.331
COPD	39 (38.6)	7 (31.8)	15 (34.9)	13 (52.0)	4 (36.4)	0.459
SVS/STS Classification (zone)						
Proximal dissection extent	3.0±0.9	3.6±0.9	3.1±0.7	2.4±1.0	3.0±0.2	<0.0001
Distal dissection extent	9.4±1.4	8.9±1.5	9.6±1.3	9.4±1.3	9.5±1.2	0.267

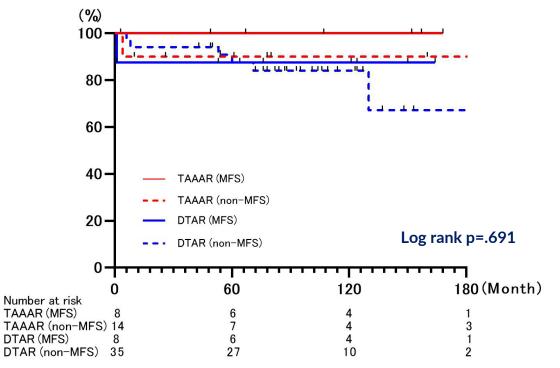

Overall outcomes by primary surgical repair

Variable	Total (n=101)	TAAAR (n=22)	DTAR (n=43)	TARET (n=25)	TEVAR (n=11)	P value
Perioperative data			•			
Operation time (min)	527.2±222.3	770.3±165.3	541.7±159.8	449.3±222.3	161.5±107.0	<0.0001
CPB time (min)	206.7±66.6	273.1±59.1	169.9±55.9	211.3±37.9	NA	<0.0001
Deep hypothermia	21 (23.3)	6 (27.3)	13 (30.2)	2 (8.0)	NA	0.100
Preoperative CSF drainage	37 (36.6)	13 (59.1)	22 (51.2)	0 (0)	1 (9.1)	<0.0001
AKA reconstruction	31 (34.4)	15 (68.2)	15 (34.9)	0 (0)	NA	<0.0001
Red blood cells (unit)	18.9±15.0	33.7±13.5	19.1±14.0	12.3±5.9	2.5±1.3	<0.0001
Fresh frozen plasma (unit)	14.6±10.6	25.2±12.4	14.8±6.2	10.4±6.6	1.1±0.3	<0.0001
Platelet (unit)	18.2±10.2	23.9±11.6	19.9±7.1	17.9±6.9	1.4±0.4	<0.0001
Prolonged ventilation (>24hr)	32 (31.7)	12 (54.6)	14 (32.6)	5 (20.0)	1 (9.1)	0.023
Postoperative data			•			
Stroke (permanent)	4 (3.9)	2 (9.1)	O (O)	1 (4.0)	1 (9.1)	0.255
Spinal cord injury	8 (7.9)	3 (13.6)	2 (4.7)	2 (8.0)	0 (0)	0.433
In-hospital mortality	4 (3.9)	2 (9.1)	1 (2.3)	0 (0)	1 (9.1)	0.306
Aorta-related reintervention	15 (14.9)	1 (4.5)	6 (13.9)	3 (12.0)	5 (45.5)	0.017

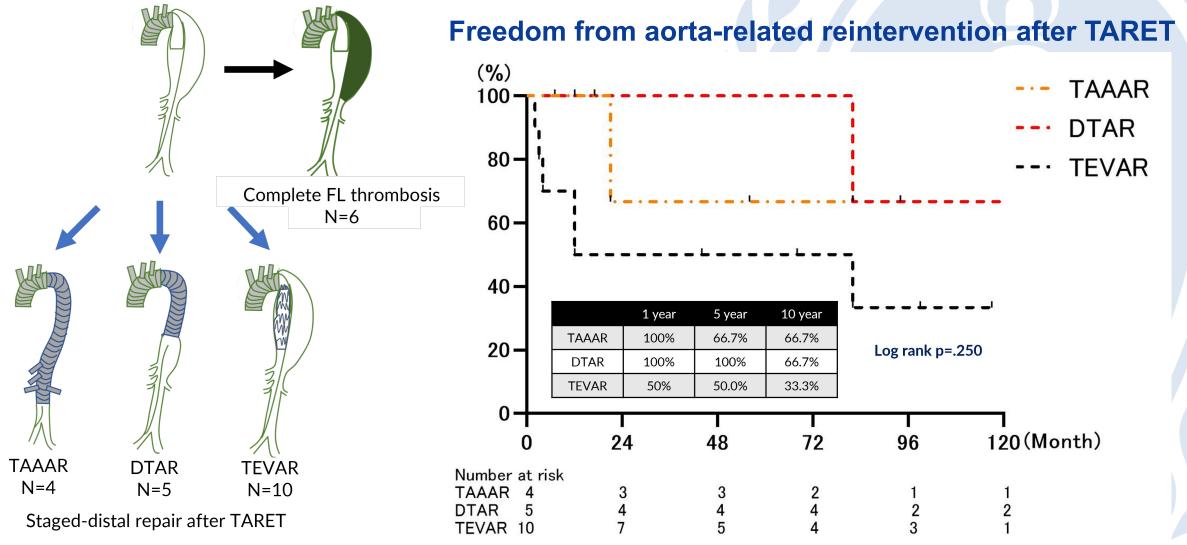
Comparisons of late outcomes by primary surgical repair


	5 year	10 year	15 year
TAAAR	77.6%	61.8%	61.8%
DTAR	86.9%	71.6%	61.4%
TARET	90.2%	21.5%	NA
TEVAR	66.3%	26.5%	26.5%

	5 year	7 year	10 year
TAAAR	93.8%	93.8%	93.8%
DTAR	87.2%	84.3%	84.3%
TARET	74.4%	74.4%	74.4%
TEVAR	77.1%	51.4%	NA


6

Comparison of late outcomes with or without MFS


	5-year	10-year	15-year
TAAAR (MFS)	100%	100%	100%
TAAAR (non-MFS)	70.0%	43.8%	43.8%
DTAR (MFS)	100%	100%	100%
DTAR (non-MFS)	84.3%	64.3%	51.4%

Freedom from aortic events

	5-year	10-year	15-year
TAAAR (MFS)	100%	100%	100%
TAAAR (non-MFS)	90.0%	90.0%	90.0%
DTAR (MFS)	87.5%	87.5%	87.5%
DTAR (non-MFS)	87.5%	84.0%	67.2%

Staged-distal repair for dissecting aorta after TARET

Multivariate Cox regression analyses for aortic event

Variable	Univariate		Multivariate			
variable	HR	95% CI	P value	HR	95% CI	P value
Marfan syndrome	0.72	0.40-1.31	0.28			
Proximal dissection extent	0.87	0.65-1.18	0.37			
Deep hypothermia	0.80	0.45-1.41	0.44			
AKA reconstruction	0.59	0.35-0.98	0.04	0.75	0.40-1.39	0.36
TAAAR	0.62	0.34-1.14	0.12	0.46	0.18-1.15	0.10
DTAR	0.73	0.46-1.16	0.19	0.52	0.28-0.99	0.05
TARET	1.93	1.09-3.40	0.02	2.27	1.26-4.09	0.007
TEVAR	2.68	1.24-3.44	0.01	3.40	1.53-4.66	0.003

Variables with P<0.2 in the univariate analysis were incorporated into the multivariate analysis.

Summary

- Although one-stage TAAA repair was associated with high perioperative morbidity and mortality, late outcomes were accomplished with excellent long-term survival and aortic event-free rates, as well as DTA repair.
- In both TAAA and DTA repairs, Marfan syndrome (MFS) patients had higher survival and aortic event-free rates compared with non-MFS patients.
- TARET and TEVAR did not improve the early and late adverse events.
- In particular, intervention with TEVAR may lead to an increase in aortic events during follow-up.

Conclusion

- Considering the optimal primary surgical repair based on long-term outcomes, TEVAR was not a durable treatment option to prevent aortic events.
- Patient-specific TAAA or DTA repair, such as in MFS patients, may be aggressively adopted rather than defaulting to minimally invasive primary repairs for all patients with CD3bDA.