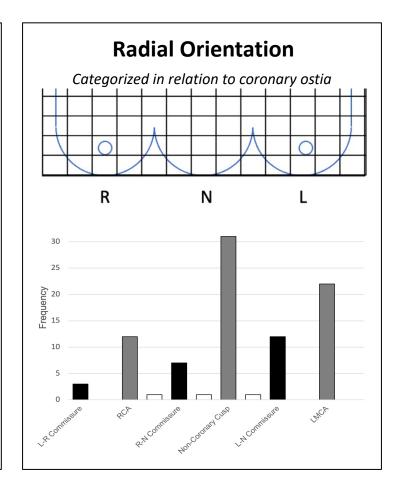
Primary Intimal Tear Distribution in Patients with Acute DeBakey I Aortic Dissection

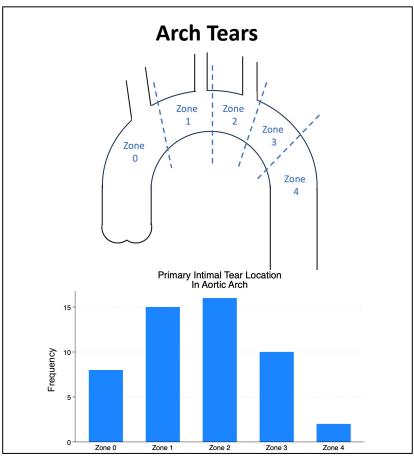
Lauren V. Huckaby, MD, MS; Helen O'Leary, BS; Alexander P. Nissen, MD; Bradley G. Leshnower, MD

Primary Intimal Tear in Acute Aortic Dissection

- The primary intimal tear (PIT)
 represents the site of aortic wall
 <u>structural failure</u> preceding
 <u>propagation of blood flow</u>
 through the layers of the aortic
 wall
- Operative strategies have focused on resection of the PIT to prevent future aortic events
- Pathogenesis of PIT formation is not fully understood

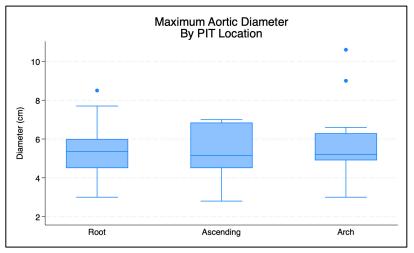
We sought to characterize <u>PIT</u> <u>location</u> in patients with acute DeBakey I aortic dissection

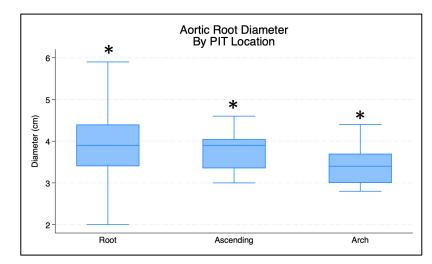

Methods


- <u>529</u> consecutive patients undergoing operative repair (2004-2019)
- Tears were identified intra-operatively by direct inspection (n=283)
- Categorized by longitudinal and radial orientation, location within aortic arch, presence of multiple tears

PIT Location

Longitudinal Orientation Root (n=118) -Coronary level (n=41, 34.7%) -Sinotubular junction (n=77, 65.3%) Ascending (n=65) -Proximal (18.5%) -Mid (56.9%) -Distal (24.6%) Arch (n=51)





Patient Characteristics

	Root N=118	Ascending N=65	Arch N=51	P-value
Age (years) – mean (SD)	53.0 (14.0)	58.3 (13.7)	56.9 (11.0)	0.136
Male Sex – no. (%)	86 (72.9)	47 (72.3)	37 (72.6)	0.996
Body mass index (kg/m²) – median [IQR]	27.5 [24.4,33.1]	27.1 [23.1,31.1]	31.2 [25.1,34.6]	0.110
Diabetes – no. (%)	76 (68.5)	25 (41.0)	30 (61.2)	0.002
Hypertension – no. (%)	110 (97.4)	57 (93.4)	49 (100.0)	0.134
Prior sternotomy – no. (%)	18 (15.3)	6 (9.2)	10 (19.6)	0.275

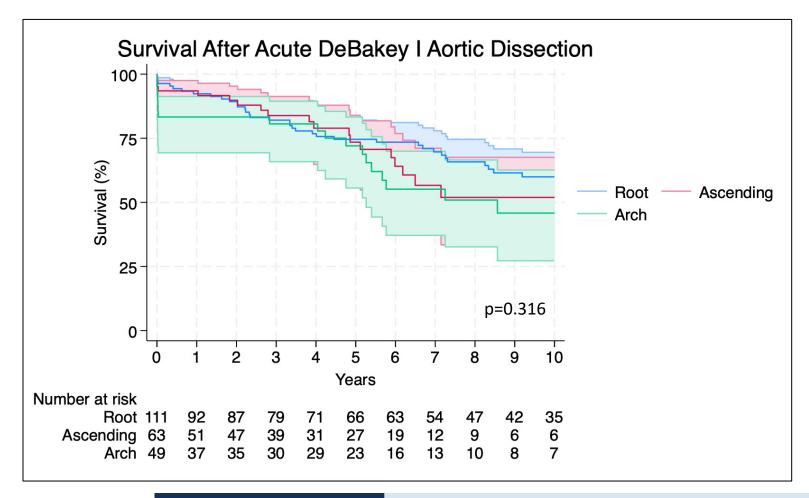
Baseline characteristics were similar between the groups

Root PIT was associated with greater aortic root dimensions but similar maximum aortic dimensions

p=0.088

p=0.001

Operative Approach


	Root PIT N=118	Ascending PIT N=65	Arch PIT N=51
Aortic Valve Replacement	16.2%	7.7%*	7.8%*
Root Replacement	40.2%*	20.0%*	13.7%*
Hemiarch Replacement	94.0%*	93.9%*	60.8%*
Total Arch Replacement	6.0%*	6.2%*	41.2%*
Frozen Elephant Trunk	8.6%	12.3%	19.6%

<u>Circulatory arrest time</u> (but not cardiopulmonary	bypass or cross-clamp times) varied by PIT location
---	---

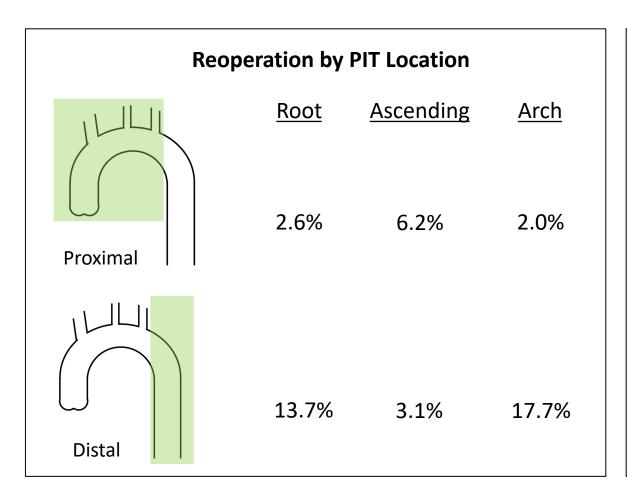
	Root	Ascending	Arch	P-value
Median time	35 minutes	39 minutes	48 minutes	0.004

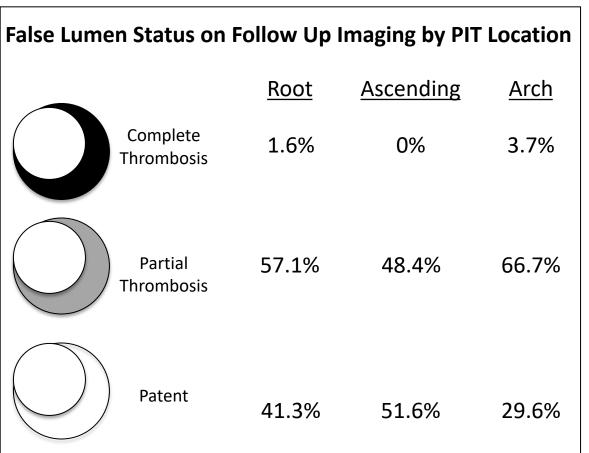
* Indicates p<0.05

Long-Term Survival by PIT Location

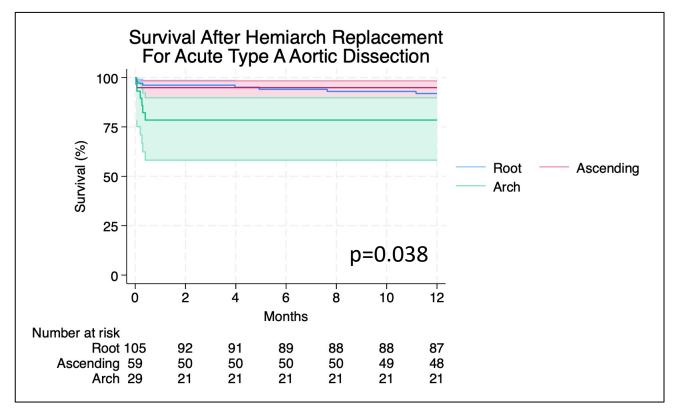
Short-term and long-term survival were similar in all groups

Post-operative Outcomes


 Permanent neurologic dysfunction was more common in the arch PIT group (p=0.011)


Root	Ascending	Arch
6.0%	6.1%	19.6%

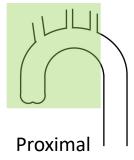
• Rates of stroke, new renal failure requiring dialysis, bleeding requiring return to the OR, and need for tracheostomy were not significantly different (p>0.05)

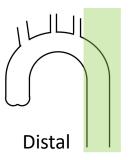

Future Aortic Events

No differences in reoperation or false lumen thrombosis based on PIT location

Outcomes of Hemiarch Replacement

Hemiarch replacement was associated with increased 1-year mortality in patients with arch PIT


Reoperation


Root Ascending Arch
2.7% 4.9% 3.2%

For hemiarch replacement, rates of proximal reoperation were equivalent in all PIT locations

13.6% 3.3% 16.3%

Rates of <u>distal reoperation</u> were highest in the <u>root</u> and <u>arch</u> PIT groups (p=0.068)

Conclusions

- PIT location is related to post-operative outcomes in surgical repair of acute DeBakey I dissection
 - In particular, <u>hemiarch replacement</u> is associated with <u>inferior</u> short-term outcomes in patients with a <u>PIT</u> in the <u>aortic arch</u>
- Understanding of PIT location, particularly in DeBakey I dissection, may provide insight into pathogenesis of aortic dissection and contribute to risk prediction in patients with aortic aneurysm

Thank you

Lauren.Victoria.Huckaby@emory.edu

