

Risk of Distal Aortic Reoperation After Isolated Ascending Aortic/Root Aneurysm Repair Among Patients with Heritable, Biscuspid or Other Aortopathies

Christopher Lau, Eilon Ram, Lamia Harik, Arnaldo Dimagli, Ivancarmine Gambardella, Charles A Mack, Mohamed Rahouma, Mario Gaudino, Leonard N. Girardi

AATS Aortic Symposium 2024

Nothing to disclose.

Background

- ■Patients undergoing proximal aortic repair are at potential risk for aneurysmal degeneration of the distal aorta, requiring a higher risk arch reoperation
- An extensive initial arch operation may decrease risk of arch reoperation but increase operative risk
- ■There is limited data on differences in the risk of distal aortic reoperation in patients with:
 - Biscupid aortopathy (BAV)
 - Connective tissue disorders (CTD)
 - Non-heritable aortopathy (Other)

Objective

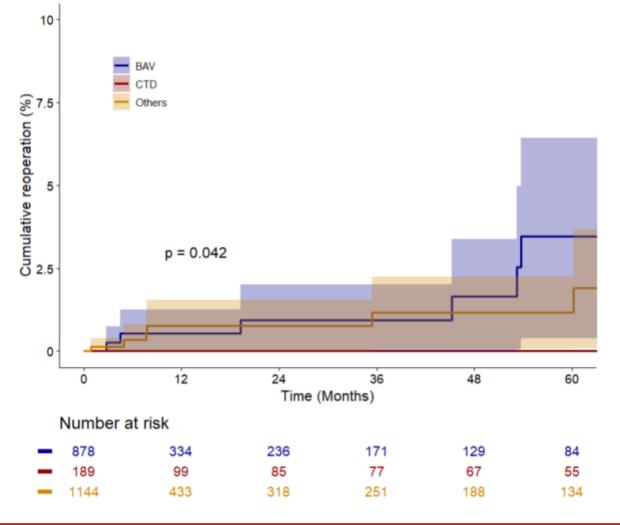
To compare the risk of reoperation in patients with bicuspid aortopathy (BAV), connective tissue disorder (CTD), and non-heritable aortopathy (other).

To identify groups that may benefit from a more extensive arch operation at the primary procedure

Methods

Retrospective, single-center cohort study Identified consecutive patients undergoing ascending aortic replacement with/without root replacement from 1997-2023

- Patients with arch replacement or aortic dissection were excluded
- ■2211 patient included in the study
 - 878 had BAV
 - 189 had CTD
 - 1144 were Others with non-heritable aneurysms
- Primary outcome: Need for arch reoperation


Baseline patient characteristics	BAV (n=878)	CTD (n=189)	Other (n=1144)	р
(n, %)				
Age (median [IQR])	57.0 [47.0, 65.0]	42.0 [30.0, 53.0]	63.0 [53.0, 71.0]	<0.001
Male sex	728 (82.9)	110 (58.2)	962 (84.1)	< 0.001
Smoking history	247 (28.1)	29 (15.3)	474 (41.4)	<0.001
NYHA Class III/IV	313 (35.6)	31 (16.4)	347 (30.3)	<0.001
Hypertension	714 (81.5)	78 (41.3)	1021 (89.4)	<0.001
Prior myocardial infarction	39 (4.4)	4 (2.1)	129 (11.3)	< 0.001
COPD	43 (4.9)	11 (5.8)	87 (7.6)	0.045
Diabetes	42 (4.8)	6 (3.2)	132 (11.5)	< 0.001
Previous CVA	41 (4.7)	15 (7.9)	132 (11.5)	< 0.001
Preoperative renal impairment	30 (3.4)	5 (2.6)	141 (12.3)	< 0.001
Preoperative shock	4 (0.5)	1 (0.5)	8 (0.7)	0.772
Aneurysm size (median [IQR])	5.3 [4.9, 5.4]	5.4 [5.1, 5.8]	5.4 [5.1, 5.8]	<0.001
Rupture	2 (0.2)	2 (1.1)	16 (1.4)	0.022
Status of aortic valve				< 0.001
Aortic insufficiency	472 (53.8)	178 (94.2)	970 (84.9)	
Aortic stenosis	389 (44.3)	2 (1.1)	88 (7.7)	
Normal	17 (1.9)	9 (4.8)	84 (7.4)	
Dissection				< 0.001
Chronic	5 (0.6)	8 (4.2)	51 (4.5)	
None	873 (99.4)	180 (95.2)	1089 (95.3)	
Subacute Weill Cornell M	o (0.0) edicine	1 (0.5)	3 (0.3)	

- Patients with CTD were younger, more likely to be female, and had fewer comorbidities
- CTD had more aortic insufficiency
- BAV had more aortic stenosis

Operative characteristics (n, %)	BAV (n=878)	CTD (n=189)	Other (n=1144)	р
CPB time (median [IQR])	112.0 [93.0, 131.0]	132.0 [120.0, 153.0]	124.0 [104.0, 145.0]	<0.001
Cardiac ischemic time (median [IQR])	90.0 [74.0, 107.0]	112.0 [100.0, 128.0]	101.0 [81.0, 118.0]	<0.001
Valve replacement type				<0.001
Bovine	601 (68.5)	17 (9.0)	482 (42.1)	
Mechanical	92 (10.5)	57 (30.2)	178 (15.6)	
None	171 (19.5)	110 (58.2)	458 (40.0)	
Porcine	14 (1.6)	5 (2.6)	26 (2.3)	
Concomitant CABG	74 (8.4)	8 (4.2)	172 (15.0)	< 0.001
Concomitant MVR	5 (0.6)	13 (7.0)	25 (2.3)	< 0.001

CTD patients required longer cardiopulmonary bypass and crossclamp time due more use of valve-sparing root replacement

The overall need for reoperation was low at five-year follow-up, but was highest in BAV patients (1.5% versus 1.2% in Others and 1.1% in CTD patients, p=0.042)

Variable		Hazard ratio		р
Age		•	0.98 (0.95, 1.01)	0.13
Smoking	no	•	Reference	
	yes	⊢ ■;	0.67 (0.27, 1.67)	0.39
Diabetes	no	+	Reference	
	yes	 	4.17 (1.16, 14.98)	0.03
Group	A: BAV	•	Reference	
	B: CTD		0.13 (0.03, 0.63)	0.01
	C: Others	⊢ ■	0.57 (0.25, 1.31)	0.19
		0.05 0.1 0.2 0.5 1 2 5 10		

CTD was associated with lower reoperation hazard (HR 0.13, 95% CI 0.03-0.63; p=0.01)

Conclusions

- Patients with CTD are at minimal risk of needing an arch reoperation after proximal aortic repair in the absence of aortic dissection
- BAV patients are at increased risk of needing arch reoperations after isolated ascending/root replacement
- Careful consideration should be given to arch replacement during the initial ascending aortic operation in patients with bicuspid aortopathy

Thank you

