Single Institution Analysis of Genetic Testing for Patients with Thoracic Aortic Aneurysm Disease Implications for Clinical Efficacy of Current ACC/AHA Genetic testing Guidelines

Adrian R. Acuna Higaki^{1,†,} Ely Erez^{1,†,} Michela Cupo¹, Anh Phu¹, Shiv Verma¹, Roland Assi¹, Prashanth Vallabhajosyula¹

[†] Contributed Equally to this study

¹ Division of Cardiac Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT

AATS Aortic Symposium 2024

Yale school of medicine

Background

- A significant proportion of thoracic aortic aneurysm (TAA) have a hereditary component
- Identification of pathogenic mutations through genetic testing greatly influences diagnostic and management strategies for patients and their families
- The "2022 ACC/AHA Guideline for the Diagnosis and Management of Aortic Disease" recommends genetic testing for thoracic aortic aneurysm patients with:
 - 1. Age Under 60 Years
 - 2. Presence of Syndromic Features of Connective Tissue Disease (CTD)
 - Marfan Syndrome, Loeys-Dietz Syndrome, or Vascular Ehlers-Danlos Syndrome
 - 3. Relevant Family History
 - First- or second-degree relative with thoracic aortic disease, peripheral/intracranial aneurysms, or unexplained sudden death at relatively young age

Yale school of medicine

Background (continued)

CENTRAL ILLUSTRATION: Evaluation of the Clinical Validity of Genes for Heritable Thoracic Aortic Aneurysms and Dissections (HTAAD) **Category A Category B Category D** DEFINITIVE MODERATE NO EVIDENCE COL3A1 EFEMP2 ACVRL1 FBN1 ADAMTS10 SMAD3 **B3GAT3** LIMITED A1 TGFB2 ELN COL1A1 TGFBR1 FBN2 COL1A2 TGFBR2 COL4A1 FLNA NOTCH1 COL5A1 ACTA2 COL5A2 SLC2A10 **MYH11** A2 COL9A1 SMAD4 MYLK COL9A2 SKI COL11A1 STRONG COL18A1 LOX A2 EMILIN1 Category C PRKG1 ENG GATA5 LIMITED GJA1 CBS **Recent genes** COL4A5 JAG1 UNCERTAIN MED12 PKD1 BGN PKD2 PLOD1 FOXE3 PLOD3 HCN4 SMAD6 MAT2A UPF3B MFAP5 VCAN SMAD2 TGFB3 Renard, M. et al. J Am Coll Cardiol. 2018;72(6):605-15.

- ClinGen Aortopathy Working Group classified genes by severity and risk of progression:
 - Category A: Definitively associated with heritablethoracic aortic disease (TAD)
 - Category B: Potentially diagnostic genes

- Category C: Genes with limited evidence
- Category D: No (clinical) evidence for heritable-TAD
- Recent Genes: Data are recent and preliminary

Objectives

- To analyze the clinical efficacy of the ACC/AHA genetic screening guidelines in patients with TAA
- To assess the clinical efficacy of large gene panels including genes classified as not definitively associated with heritable-TAD

Methodology

- All patients 18 and older with diagnosed thoracic aortic aneurysm who underwent genetic testing from August 2012 to September 2023 at a single tertiary medical center
- Two separate testing laboratories
 - Lab A: 35 Gene Panel in 2023
 - Lab B: 52 Gene Panel in 2023
- Study Nomenclature
 - Category A Genes-> "Primary Genes"
 - All Others-> "Secondary Genes"

Table 1. Genes Included in Thoracic Aortic DiseasePanels

Both Labs		Lab A	Lab B		Legend	
COL3A1	SMAD4	PLOD3	ELN	GATA6	Category A	
FBN1	SKI	ARIH1	COL4A5	HEY2	Category B/C	
SMAD3	CBS	LTBP3	PKD1	MIB1	Recent	
TGFB2	BGN		PKD2	NPR3	Category D	
TGFBR1	FOXE3		COL1A1	PPP1CB	Not on List	
TGFBR2	HCN4		COL1A2	ROBO4		
ACTA2	MAT2A		EMILIN1	SOX18		
MYH11	MFAP5		GATA5	TCF7L2		
MYLK	SMAD2		AEBP1	TGFBR3		
LOX	TGFB3		GATA4	THSD4		
PRKG1	ADAMTS10					
EFEMP2	COL5A1					
FBN2	COL5A2					
FLNA	MED12					
NOTCH1	PLOD1					
SLC2A10	SMAD6					

Patient Characteristics

- 1034 TAA Patients included in study
- Most common criteria for genetic testing was Age Under 60 Years (42.4%)
- No Criteria was present in about a third of patients who underwent genetic testing (30.7%)
- Median number of patients tested for each of the:
 - Primary Genes: 1032 (range: 749-1034)
 - Secondary Genes: 847.5 (range: 143-1033)

Table 2. Patient Demographics

Variables	All Patients		
	(N=1034)		
Age, years	62 (54-69)		
Race			
White	898 (86.9%)		
Black	52 (5.0%)		
Asian	18 (1.7%)		
Other	37 (3.6%)		
Unknown	29 (2.8%)		
Testing Lab			
А	134 (13.0%)		
В	900 (87.0%)		
Criteria for Testing*			
Age Under 60 Years	438 (42.4%)		
Syndromic Features of CTD	197 (19.1%)		
Family History	432 (41.8%)		
Agen & Gittaite Metmedian (IOR).	A3117th3Pv28ads		
formatted as n (%).			
*Patients may meet more than one	criterion and		
therefore this category does not add	l up to 100%.		
CTD, Connective Tissue Disease; I	QR, Interquartile		
Range.			

Results

- Result distributions varied significantly in All Genes and Primary Genes
 - All Genes: Syndromic Features of CTD differed from the three other groups
 - Primary Genes: Syndromic Features of CTD and No Criteria each differed from the three other groups

Table 3. Patient Genetic Testing Results, by testing Criteria and by GeneGroups

Result	Overall	Age Under	Syndromic	Family	No Criteria	P Value*
	(N=1034)	60 Years	Features of	History	Met	
		(n=438)	CTD (n=197)	(n=432)	(n=317)	
All Genes						<0.001**
Pathogenic	41 (3.97%)	24 (5.48%)	26 (13.20%)	20 (4.63%)	7 (2.21%)	
VUS	282 (27.27%)	112 (25.57%)	50 (25.38%)	127 (29.40%)	87 (27.44%)	
Negative	711 (68.76%)	302 (68.95%)	121 (61.42%)	285 (65.97%)	223 (70.35%)	
Primary Genes						
(Category A)						<0.001***
Pathogenic	34 (3.29%)	24 (5.48%)	25 (12.69%)	19 (4.40%)	2 (0.63%)	
VUS	126 (12.19%)	49 (11.19%)	25 (12.69%)	58 (13.43%)	43 (13.56%)	
Negative	874 (84.53%)	365 (83.33%)	147 (74.62%)	355 (82.18%)	272 (85.80%)	
Secondary						
Genes (Others)						0.07
Pathogenic	7 (0.68%)	0 (0.00%)	1 (0.51%)	1 (0.23%)	5 (1.58%)	
VUS	181 (17.50%)	70 (15.98%)	28 (14.21%)	83 (19.21%)	53 (16.72%)	
Negative	846 (81.82%)	368 (84.02%)	168 (85.28%)	348 (80.56%)	259 (81.70%)	

* Fisher's exact test was used to compare distribution of genetic results for all four groups. For initially significant results. post hoc analysis using Fisher's exact test and Holm-Bonferroni correction was used.

**Post hoc analysis of the distribution of genetic results for All Genes showed difference between Syndromic Features of CTD and each of the three other groups (all P <0.05).

***Post hoc analysis of the distribution of genetic for the Primary Genes revealed differences between Syndromic Features of CTD and all other groups (all P < 0.05), as well as between Age Under 60 Years and No Criteria groups (P = 0.002) and between Family History and No Criteria (P = 0.016).

Pathogenic Result in Primary Gene by Criteria Combination

- Proportion of pathogenic results in patients with all three criteria or Age Under 60 Years and Syndromic Features of CTD differed significantly from No Criteria (P<0.001)
- Proportion of pathogenic results observed with all other criteria combinations did not differ from proportion with no criteria met

Table 3. Proportion of Pathogenic Results by Combination ofCriteria Met

	Criteria		Pathogenic Probability**	Sample Size	P Value*
Age Under	Syndromic	Family	_	Pathogenic/Total	
60 Years	Features of	History			
	CTD				
Y	Y	Y	22.00% (12.75%-35.24%)	11/50	P < 0.001
Y	Y	Ν	18.75% (10.19%-31.94%)	9/48	P < 0.001
Ν	Y	Ν	5.88% (2.02%-15.92%)	3/51	P = 0.123
Ν	Y	Y	4.17% (1.15%-13.98%)	2/48	P = 0.427
Y	Ν	Y	1.95% (0.66%-5.57%)	3/154	P = 1
Ν	Ν	Y	1.67% (0.57%-4.78%)	3/180	P = 1
Ν	Ν	Ν	0.63% (0.17%-2.27%)	2/317	
Y,	N.	N N	0.54% (0.09%-2.98%)	1/186	P = 1

* Fisher's exact test comparing each criteria combination to patients who met no criteria.

All P-values adjusted using Holm-Bonferroni. Significant results in bold.

**Presented as percent and 95% Wilson Score confidence intervals.

Y, Yes; N, No.

Limitations

- Retrospective study reliant on medical history documented in electronic medical records
- Mutation interpretations may have changed over time, potentially leading to under estimation of pathogenic mutation rates
- Number of genes tested has changed over time, potentially leading to under estimation of pathogenic mutation rates
- Cost of genetic testing may have introduced a socioeconomic bias in the study population

Conclusions

- Our cohort's genetic mutation rates of 3.97% Pathogenic and 27.27% VUS align with results reported in other studies
- Testing of Secondary Genes yielded little clinically meaningful results
- Pathogenic mutation rates in Primary Genes varied between the three guideline testing criteria, with highest rates in patients with syndromic features of CTD
- Accounting for the combination of criteria met could improve pre-testing risk stratification and influence future guidelines
- High prevalence of VUS across all groups underscores the need for a more nuanced approach for recommendation regarding VUS mutations in clinical practice

Thank You!

Connect with me! Twitter/X: AAcunaHigaki Email: Adrian.acunahigaki@yale.edu

Yale school of medicine