

The Impact of Interhospital Transfer on Hospital Mortality for Aortic Dissection Within a Universal Healthcare System A Population Based Study

Clinical Problem

- Although acute type A aortic dissection is classically associated with a time dependent increase in mortality, interhospital transfer has not shown to increase mortality for Medicare patients within the US health system [Goldstone et al. Circulation 2019] or within the IRAD registry [Froehlich et al. Am J Med 2018]
- Given the differences and unique challenges faced by health systems worldwide, these results may not be generalizable
- Canada has a geographically large landmass and more regionalized cardiac care with much fewer cardiac surgery centers. Expeditious patient-transfer from rural communities to tertiary hospitals equipped to manage aortic dissections in a timely manner can prove challenging
- We sought to determine the impact of interhospital transfer on hospital mortality for type A and type B aortic dissections within the Canadian healthcare system

Study Purpose

Primary Outcome

- Determine death (mortality rate) for incident cases of thoracic aortic dissection (type A and type B) that:
 - are diagnosed at a non-cardiac surgery center and *are not transferred* to a cardiac surgery center
 - are diagnosed at a non-cardiac surgery center and *die on-route to a cardiac surgery center*
 - are diagnosed at a non-cardiac surgery center and <u>transfer</u> to a cardiac surgery center for treatment
 - are diagnosed at a cardiac surgery center and *treated at that same cardiac surgery hospital*

Secondary Outcomes

- To assess the average distance traveled for aortic dissection (type A and type B) for interhospital transfers
- To assess patient characteristics associated with non-transfers/palliation strategy (for type A dissection)

Inclusion Criteria

• All Ontario hospitals and all Ontario residents with an aortic dissection between March 2003 and April 2020

Exclusion Criteria

(i) Non-Ontario residents at indexed date (ii) age <18 years of age at time of diagnosis (iii) patients with main or secondary diagnosis in 10 years prior to the indexed date

- Queried the Institute for Clinical Evaluative Sciences (ICES) databases between April 1, 2003 March 31, 2020, to identify incident cases of aortic dissections
 - ICES stores anonymously linked population-based health information on individual patients for the province of Ontario (~14.7 million persons). Data is linked across multiple databases using a unique encoded identifier
- Used diagnoses and procedural codes from the Canadian Institute of Health information to differentiate between type A and type B aortic dissections
 - Diagnosis Codes were from the International Classification of diseases 10th edition (ICD-10-CA codes)
 - Procedure Codes were from the Canadian Classification of Health Interventions (CCI codes)
- Incident cases
 - Defined as cases with no prior aortic dissection diagnosis within the previous 10 years

Baseline Characteristics	N=6,218							
Female	2,464	(39.6%)		Hypertension	4,577	(73.6%)		
Age	<50	(10.9%)		Dyslipidemia	1,954.	(31.4%)		
	51-74	(48.9%)						
	>75	(40.2%)		COPD	1,704	(27.4%)		
Age (median <u>+</u> SD)	68.7 ± 15			Diabetes	1,184	(19.0%)		
Rural Residence	867	(13.9%)		CHF	978	(15.7%)		
Income Quartile				Cog Impairment • Stroke	322 • 122	(5.2%) •(2.0%)		
(lowest) 1	1,359	(21.9%)						
2	1,315	(21.1%)		Acute M.I.	265	(4.3%)		
3	1,186	(19.1%)						
4	1,137	(18.3%)		Chronic Kidney Disease	220	(3.5%)		
(highest)5	1,190	(19.1%)						
Unknown	31	(0.5%)		PVD	159	(2.6%)		

	n	
Type B Dissection Cohort	3,577	100%
Underwent Intervention	616	17%
Transferred from Non-Cardiac Centre	743	21%
	779/2413	32%
Transferred, No Intervention (Medical Therapy)	553/743	74%
Transferred, No Intervention (Medical Therapy)	1 5 /5 5 0	0 70/
Hospital Mortality	15/553	2.1%
Non-Cardiac Centre Transferred & Intervention		
Hospital Mortality	44/743	5.9%
		p=NS
Cardiac Centre Direct Admission & Intervention		
Hospital Mortality	88/1634	5.4%

Results TRANSFER MORTALITY (30-DAY) / TYPE A DISSECTION

	Total			
TYPE A DISSECTION	Patients	Death	/ Mortality \	95% Confidence Interval
Non-Cardiac Centre Transferred for Consideration of				
Surgery	812	264	32.51%	(28.81-36.82)
Cardiac Center				
Direct Admission & Surgery	694	113	16.28%	(13.42-19.58)
Odds Ratio Estimates	Point Estima	ate	2.484	4 (1.936 – 3.187))

Results TRAVEL DISTANCE / TYPE A DISSECTION

Non-Cardiac Centre Transferred for	Total Patients	Measure	Mean	Median	Range			
Surgery	812	Km	73.13	34.58	0.589232 (minimum)	1337.73(maximum)		

Hospital Transfer Distance and Mortality: NS

Crude rates (using gamma distribution)

_				- ·		
Rank	for Variable	Denominator	Numerator	Crude rate	per	C.I (gamma method)
Total_	<u>kms</u>				100	
1	[0.589 – 12.125]	161	55		34.16	(25.74 - 44.47)
2.	[12.126 – 26.107]	173	52		30.06	(22.45 - 39.42)
3	[26.108 – 49.914]	143	37		25.87	(18.22 - 35.66)
4.	[49.915 – 98.955]	172	57		33.14	(25.1 - 42.94)
5.	[98.956 - 1337.73]	160	63		39.38	(30.26 - 50.38)

Results

Centre

Type A Dissections Presenting to a Non-Cardiac Centre

Factors Associated with Palliation Strategy vs. Transfer Strategy for Surgical Consideration

•	Female	<u>p<0.001</u>
•	Age >75	p<0.008
•	Rural Residence	p<0.001
•	Increased Charlson Co-morbidity Index	p<0.001

Study Limitations

- Administrative database data
- Potential for misclassification with algorithm to delineate Type "A" & Type "B" dissections
- Inability to delineate between land and air transfers (distance poor surrogate for time)

- In a Universal Healthcare System (Province of Ontario)
 - Interhospital transfer for type A dissection (but not type B dissection), was associated with increased mortality relative to patients diagnosed at a hospital providing onsite cardiac surgery services
 - More expedient transfer policies may improve aortic dissection outcomes
 - Women were more likely than men to have an initial care pathway of palliation versus interhospital transfer for consideration of emergent surgery
 - This sex-specific variance to transfer decisions warrants further study