Total Circulatory Arrest Alone is Safe

in Hemiarch repair under Moderate Hypothermia

Chee-hoon Lee¹, MD., Joon Bum Kim², MD., PhD., Mi Hee Lim¹, MD., Min Ho Ju¹, MD., and Hyung Gon Je¹, MD., PhD.

¹Department of Cardiovascular and Thoracic Surgery, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Korea

²Stanford University, Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Korea

Objective

- ✓ Previous studies showed **equivalent safety** of **total circulatory arrest** (TCA) alone for **hemiarch repair** compared to **antegrade cerebral perfusion** (ACP).
 - ✓ For brief periods (< 30 mins)</p>
 - ✓ Under moderate hypothermia (25-28°C)

✓ Nevertheless, concerns regarding potential risk of neurologic injuries are still linger

✓ We sought to compare neurologic safety in these setting: TCA alone vs. ACP using postoperative brain diffusion-weighted MRI (DWI)

Methods

• From Jan. 2019 through Aug. 2023

165 consecutive patients underwent hemiarch repair

$$N = 153$$

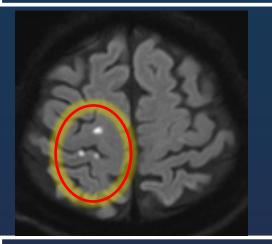
Postoperative DWI available N = 112 (73.2%)

Exclusion N = 12 (7.3%)

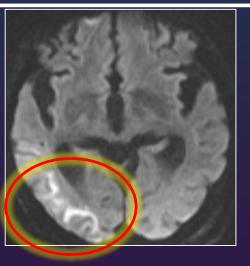
Impaired mentality at index point

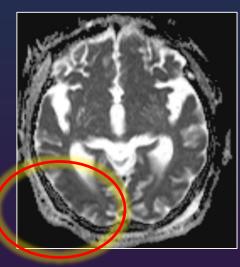
Early postoperative DWI has become

the institutional standardized protocol


to improve Quality of Care Initiatives

Outcomes of interest


- ✓ Clinical outcomes
 - **✓** Mortality
 - ✓ Major adverse events
 - ✓ Overt neurologic injuries


✓ The incidence & number of acute brain lesions in postoperative DWI

Embolic infarctions

Watershed infarction

DWI

ADC map

✓ Definition of acute infarction; High signal intensity in DWI and correlates with low signal intensity on the apparent diffusion coefficient (ADC) map

Table 1. Baseline summary

Variables	TCA (N = 110)	ACP (N = 43)	<i>P</i> -value
Age (year), n (%)	66.6 ± 13.1	63.5 ± 13.3	0.200
Female gender, n (%)	59 (53.6)	15 (34.9)	0.057
Diabetes, n (%)	18 (16.4)	5 (11.6)	0.675
Hypertension, n (%)	72 (65.5)	28 (65.1)	0.331
Prior CVA, n (%)	13 (11.9)	6 (14.0)	0.925
CKD stage ≥ 3, n (%)	39 (35.5)	15 (34.9)	> 0.99
NYHA Functional class ≥ 3, n (%)	50 (45.5)	17 (39.5)	0.007
EuroSCORE II, mean ± SD	15.6 ± 20.4	8.8 ± 13.1	0.044
LV ejection fraction (%), mean ± SD	58.2 ± 9.6	56.1 ± 10.1	0.313
Acute aortic dissection, n (%)	46 (41.8)	23 (53.5)	0.261

Table 2. Operative profiles summary

Variables	TCA (N = 110)	ACP (N = 43)	<i>P</i> -value
Operative procedures, n (%)			
Hemi-arch only	42 (38.2)	23 (53.5)	0.124
Root replacement or re-implantation	41 (37.3)	6 (14.0)	0.009
Aortic valve replacement	27 (24.5)	15 (34.9)	0.277
Minimally invasive access, n (%)	22 (20.0)	10 (23.3)	0.823
The lowest core temperature (°C), median [IQR]	25 [25, 25]	25 [25, 25]	0.332
TCA time (min), median [IQR]	18 [15, 21]	6 [4, 8]	< 0.001
ACP time (min), median [IQR]	0 [0, 0]	16 [13, 25]	< 0.001

Table 3. Early clinical outcomes

Variables	TCA (N = 110)	ACP (N = 43)	<i>P</i> -value
Adverse outcomes, n (%)			
Re-exploration for bleeding	5 (4.5)	4 (9.3)	0.458
Need for ECMO	1 (0.9)	1 (2.3)	> 0.99
New onset dialysis	4 (3.6)	3 (7.0)	0.647
Mechanical Ventilation ≥ 24 hours	14 (12.7)	10 (23.3)	0.173
Early mortality	6 (5.5)	3 (7.0)	> 0.99
Without transfusion, n (%)	19 (17.3)	6 (14.0)	0.798
Bleeding amount for 12 hours (ml), median [IQR]	467 [319, 700]	470 [335, 722]	0.985
Intensive care unit stay (hour), median [IQR]	25 [22, 46]	25 [22, 46]	0.977
Length of stay (day), median [IQR]	7 [6, 8]	7 [6, 9]	0.279

Table 3. Neurologic outcomes

Variables	TCA (N = 110)	ACP (N = 43)	<i>P</i> -value
Temporary neurologic deficit, n (%)	10 (9.1)	7 (16.3)	0.324
Permanent neurologic deficit, n(%)	2 (1.8)	1 (2.3)	> 0.99
Postoperative DWI available, n (%)	85 (77.3)	27 (61.8)	0.106
Incidence of acute watershed infarction, n (%)	2 (2.4)	2 (7.4)	0.524
Incidence of acute embolic infarction, n (%)	52 (61.2)	17 (63.0)	> 0.99
Number of embolic infarctions, median [IQR]	1 [0 – 3]	3 [0 – 6]	0.128

✓ Inverse probability of treatment weighing (IPTW) adjustments for comparative neurologic outcomes

✓ TCA vs. ACP

Variables	Odds ratio	95% CI	<i>P</i> -value
Temporary neurologic deficit	0.98	0.90 – 1.08	0.73
Permanent neurologic deficit	0.98	0.93 – 1.03	0.44
Number of embolic infarctions	N/A	N/A	0.17

Conclusion

✓ For short period (<30 min), TCA alone with moderate hypothermia was not inferior to a strategy adding antegrade cerebral perfusion in open hemiarch repair with regard to the risk of neurologic injuries