Valve-sparing versus bio-Bentall aortic root replacement in sexagenarians: short and long-term outcomes

Alessandra Sala¹, Michele Di Mauro², Edoardo Zancanaro³, Marta Bargagna³, Francesco Grimaldi¹, Lorenzo Menicanti¹, Ottavio Alfieri³, Michele De Bonis³, Carlo de Vincentiis¹

¹ Department of Cardiac Surgery, IRCCS Policlinico San Donato, Italy

² Department of Cardiology, Pierangeli Hospital, Pescara, Italy

³ Department of Cardiac Surgery, IRCCS San Raffaele Hospital, Italy

- Valve-sparing root replacement (VSRR) with the David technique is an established therapy for aortic root pathology.
- Valve preservation in VSRR is challenging, however the benefits of maintaining the native valve are numerous, especially in young patients.
- Limited data is available comparing VSRR and conventional aortic root replacement (ARR) with a bio-Bentall technique in older patients.
- The aim of this study was to evaluate both short and long-term outcomes between the David procedure and ARR with a biological valved conduit in sexagenarians.

Patients

 A multicenter retrospective study

 299 consecutive patients with aortic root pathology and treated with either the David or the bio-Bentall technique, from 2002 to 2022, were identified and individually reviewed (*Figure 1*).

Methods

- Preoperative and postoperative characteristics were entered into a dedicated database;
- Clinical and echocardiographic follow-ups were performed either in our Institutional outpatient clinics or patients were reached via telephone calls and were asked recent echocardiographic data (<6 months);
- Follow-up was 98% complete (median 15 years [12-18], longest follow-up time was 18 years);
- Inverse probability of treatment weighting (IPTW) was applied as a propensity score methodology → limit selection bias, balance baseline characteristics and avoid excessive trimming of both groups
 - Balance was compared using standardized mean difference (SMD)
 - Optimal balance $\leq 20\%$
 - Optimal balance was obtained for all variables except age (0.32), dyslipidemia (0.61), chronic kidney disease (0.39) and previous cardiac surgery (0.28)
- Kaplan-Meier survival curves were used for estimating long-term survival since operation, and long-rank test was used to assess intergroup comparisons.

Results

Baseline clinical characteristics are reported in *Table 1*.

Table 1

- Patients undergoing the David procedure had:
- Relatively low chronic kidney disease and previous cardiac surgeries
- Mostly tricuspid valves (95%)

Characteristics	David N= 82	bio-Bentall N=217	Unadjusted SMD	Adjusted SMD
Sex (F)	16 (20%)	35 (16%)	-0.09	-0.07
Age (years)	67 [63-71]	72 [68-76]	0.79	0.32
Smoke	12 (15%)	10 (4.6%)	-0.47	-0.14
Dyslipidemia	43 (52%)	70 (32%)	-0.44	-0.61
Diabetes	7 (8.5%)	16 (7.4%)	-0.04	-0.08
Hypertension	75 (91%)	211 (97%)	0.35	0.19
Ischemic heart disease	12 (15%)	27 (12%)	-0.06	-0.05
NYHA Class • I • II • III • IV	22 (27%) 42 (51%) 17 (21%) 1 (1.2%)	26 (12.5%) 145 (67%) 43 (20%) 3 (1.4%)	0.22	0.06
CKD	4 (4.9%)	47 (22%)	0.47	0.39
COPD	16 (20%)	56 (26%)	0.15	-0.06
REDO	4 (4%)	40 (23%)	0.27	0.28
Marfan syndrome	1 (1.2%)	5 (2.3%)	0.07	-0.0006
Familial aortopathy	3 (3.7%)	23 (11%)	0.22	0.15
Acute aortic dissection	1 (1.2%)	15 (6.9%)	0.22	0.17
Chronic aortic dissection	3 (3.7%)	10 (4.6%)	0.05	0.12
Aortic Regurgitation			0.06	0.04
• 0+	1 (1%)	7 (3%)		
• 1+	10 (12%)	23 (10%)		
• 2+	15 (18%)	39 (18%)		
• 3+	22 (27%)	37 (17%)		
• 4+	34 (42%)	111 (51%)		
Bicuspid aortic valve	4 (4.9%)	42 (19%)	0.36	0.18
LVEF • <30% • 30-50% • >50%	0 (0%) 12 (15%) 70 (85%)	5 (2%) 87 (40%) 125 (58%)	-0.55	-0.17

In-hospital results

- Emergency surgery for acute aortic syndromes was more frequent in the bio-Bentall group (7% vs. 1% in David, p=0.043).
- Following IPTW, there was no significant difference in in-hospital mortality between groups (1.2% vs. 4.6%, p=0.3).
- Despite slightly longer CPB and XC times, and higher rate of residual mild AR at discharge, patients in the David group had higher postoperative LVEF (p<0.001).
- The incidence of neurologic complications (p=0.003) and permanent pacemaker implantation (p=0.022) was significantly higher in the bio-Bentall group.

	Characteristics	David N=82	Bio-Bentall N=217	p-value
	Intraoperative Details			
>	Indication Elective Urgent Emergent 	81 (99%) 0 (0%) 1 (1%)	196 (90.3%) 6 (2.8%) 15 (6.9%)	0.043
\rightarrow	CPB time (min) XC time (min)	143 [122-167] 114 [103-136]	134 [108-143] 101 [90-113]	0.004 <0.001
	Hemiarch replacement	4 (4.9%)	13 (6%)	>0.9
	Circulatory arrest	7 (8.5%)	18 (8.3%)	>0.9
	Additional aortic leaflet repair	35 (42.7%)	0 (0%)	
	Additional surgical procedure	26 (31.7%)	50 (23%)	0.4
	In-hospital results			
	Death	1 (1.2%)	10 (4.6%)	0.3
λ	Myocardial infarction	1 (1.2%)	2 (0.9%)	>0.9
	Neurological complications	0 (0%)	22 (10%)	0.003
	Pulmonary complications	9 (11%)	36 (17%)	0.2
	Acute kidney injury	2 (2.4%)	11 (5.1%)	0.5
	Surgical re-exploration	3 (3.7%)	10 (4.6%)	0.13
λ	PPM implantation	2 (2.4%)	23 (11%)	0.022
	Predischarge TTELVEF (%)Residual AR	55 [50-60]	50 [45-56]	<0.001
	 AR 0+ AR 1+ AR 2+ 	60 (73%) 21 (26%) 1 (1%)	216 (99%) 1 (1%) 0 (0%)	<0.001

Long-term results

At 10 years follow-up there were 45 late deaths

- 11 (13.4%) in the David group
- 34 (15.7%) in the bio-Bentall group

Long-term overall survival was: 88.6±4.4% David vs. 80.3±3.7% bio-Bentall (*p*=0.176) (*Fig. 2*)

Long-term results

-- David procedure -- BioBentall

Fig. 3

Only 14 were cardiac-related:

- 0 (0%) in the David group
- 14 (6.5%) in the bio-Bentall group [7 infective endocarditis, 5 end-stage HF, 2 arrhythmias]

At 10 years, **cardiac survival** was: 97.5±2.5% David vs. 91.9±2.5% bio-Bentall (*p*=0.018) (**Fig 3.**)

Long-term results

Reintervention:

 Only 1 patient (0.5%) in bio-Bentall group for endocarditis

Recurrence of \geq **2+ AR**:

Trend towards higher recurrence of at least moderate AR in the David group (p=0.117) (Fig. 4)

Conclusions

- Results show low in-hospital mortality and good 10-year survival in patients aged 60 or older, regardless surgical procedure.
- VSSR with the David procedure → improved long-term cardiac survival, with lower rates of infective endocarditis, PPM implantation and HF episodes
 → with similar rates of reintervention or recurrence of moderate AR.
- VSSR with the David procedure should still be considered as a surgical option in appropriately selected sexagenarians with aortic root pathology.