

A Computational Analysis of Annuloplasty in Bicuspid Aortic Valve Regurgitation

Jiayi Ju (1), Tianyang Yang (2), Shengzhang Wang (1)

(1) Fudan University, Shanghai, China, (2) Shanghai Chest Hospital, Shanghai, China

Background

- Bicuspid aortic valve (BAV) is a prevalent cardiac anomaly observed in 0.5%–2% of adults^[1].
- 13%-32% of BAV patients experience moderate to severe aortic regurgitation (AR)^[2].
- Annuloplasty is crucial for stabilizing the annulus and ensuring the long-term durability of BAV repair^[3].
- The optimal size of annuloplasty remains undetermined.

Purpose of this work

- Create a patient-specific model for BAV
- Use numerical simulation to assess the impact of different annuloplasty sizes on treating BAV regurgitation
- Provide optimal threshold range for annuloplasty size in clinical practice.

02 Methods: Overview

AATS

Real surgery routine

Routine Planning

Calculate annuloplasty pathways for annular plane.

Anuloplasty simulation Finite Element Analysis

Simulation

Conduct computational analysis to gain mechanical and hemodynamic results.

AATS

Modeling procedure

- Outline the valve, sinus and ascending aorta at 75% of the cardiac cycle in CT images
- Reconstruct the pre- and post-operative model respectively in the software 3Dslicer
- Smooth and mesh the models for further simulation

Software 3Dslicer

Pre-operative Valve

Post-operative Valve

Patient Information

✓ 35-year-old male

- ✓ Severe bicuspid aortic valve regurgitation
- \checkmark Underwent annuloplasty at the level of basal ring
- \checkmark Underwent pre- and post-operative ECG gated MSCT

02 Methods: Routine Planning

AATS

Surgical procedure

Use a **circular steel column** with a diameter of 19-32mm to remold the annular plane.

Routine planning for simulation

Follow the surgical procedure to plan the annuloplasty simulation routine.

STEP 1	Project tl

Project the annulus curve onto the annular plane.

STEP 2

Create a ring and **register** it with the annular plane.

Calculate the pathway based on an optimal algorithm.

Algorithm:

u : Normalized arc length parameter $\mathbf{s}_{\text{annulus}}(u)$ and $\mathbf{s}_{\text{ring}}(u)$: 3D annular spline curves φ : A shift in the relative parameterization between curves $\|\cdot\|_2$: Euclidean norm

02 Methods: Simulation

ØAATS

Preprocessing

Expand the annulus of the post-operative model to align with the pre-operative annulus.

Expansion Routine

★ Aim for Preprocessing:

Obtain a model underwent **raphe relaxation** and **the free margin plication**.

Annuloplasty simulation

- Create elastic rings with diameters of 19-27 mm
- Remold the annular plane along the planned routine
- Constrain the annular plane by the elastic rings

Annuloplasty Routine for 23mm Ring

Annuloplasty Animation [click]

02 Methods: Simulation

AATS

Finite Element (FE) Analysis

Simulate the motion of BAV after annuloplasty within two cardiac cycles

- Material
 - ✓ BAV: Mooney-Rivlin hyperelastic model✓ Aorta & Ring: linear elastic model
- Boundary condition
 - ✓ Transvalvular pressure drop curve was applied on the leaflets
 - \checkmark Inlet and outlet of the aorta were fixed
 - \checkmark Rings could move following the aorta

Computational Fluid Dynamic (CFD) Analysis

Obtain hemodynamic results at peak systole

• Material

 \checkmark Blood: incompressible Newtonian fluid turbulence model

- Boundary condition
 - ✓ Aortic Inlet: flow-rate
 - ✓ Aortic Outlet: pressure

03 Results: Model Validation

ØAATS

The patient underwent annuloplasty surgery using a 23mm-sized steel column

Compare the 23mm annuloplasty simulation model with the post-operative model

Projection of the annulus on the annular plane

✓ The projection shapes were essentially consistent
✓ Projected area relative error: 2.84%

Coaptation area of the leaflets in a cardiac cycle

✓ Maximum values were close✓ Trends of change were consistent

ØAATS

Coaptation area of the leaflets

Stress distribution of the valve

- As the annuloplasty ring shrank, leaflet coaptation area increased, lowering stress there.
- Folds at the leaflet root intensified with ring diameter below 23mm.

PAATS

Stress distribution of the aorta root

Wall shear stress of the aorta

• With enhanced annular remodeling, the annular plane experienced stress concentration, leading to an increasement in Mises stress and wall shear stress in the adjacent region.

03 Results: Blood Field

() AATS

Streamline and velocity profile

• As the ring size reduced, flow velocity increased in the sinus and remained unchanged in the ascending aorta.

• Transvalvular pressure drop decreased after annuloplasty.

Other Parameters

Outlet plane

Sinus

Inlet plane

For the selected patient:

- Smaller-sized ring have benefit on improving leaflet coaptation area and mitigating of leaflet stress and transvalvular pressure gradient.
- Excessively small ring may result in leaflet folding at the root and wall shear stress increasement at the annular plane region.

Personalized annuloplasty simulation may be a valuable tool to provide **optimal size threshold** for individual patients before surgery.