A Computational Analysis of Annuloplasty in Bicuspid Aortic Valve Regurgitation

Jiayi Ju (1), Tianyang Yang (2), Shengzhang Wang (1)

(1) Fudan University, Shanghai, China, (2) Shanghai Chest Hospital, Shanghai, China

| Background

- Bicuspid aortic valve (BAV) is a prevalent cardiac anomaly observed in $0.5 \%-2 \%$ of adults ${ }^{[1]}$.
- $13 \%-32 \%$ of BAV patients experience moderate to severe aortic regurgitation $(A R)^{[2]}$.
- Annuloplasty is crucial for stabilizing the annulus and ensuring the long-term durability of BAV repair ${ }^{[3]}$.
- The optimal size of annuloplasty remains undetermined.

- Purpose of this work

- Create a patient-specific model for BAV
- Use numerical simulation to assess the impact of different annuloplasty sizes on treating BAV regurgitation
- Provide optimal threshold range for annuloplasty size in clinical practice.

- Modeling procedure

- Outline the valve, sinus and ascending aorta at 75% of the cardiac cycle in CT images
- Reconstruct the pre- and post-operative model respectively in the software 3Dslicer
- Smooth and mesh the models for further simulation

Software 3Dslicer

Pre-operative Valve

Post-operative Valve

02 Methods: Routine Planning

Surgical procedure

Use a circular steel column with a diameter of 19-32mm to remold the annular plane.

Routine planning for simulation

Follow the surgical procedure to plan the annuloplasty simulation routine.
STEP 1 Project the annulus curve onto the annular plane.

STEP 2
Create a ring and register it with the annular plane.

STEP 3 Calculate the pathway based on an optimal algorithm.

Algorithm:

$\underset{\varphi \in[0,1)}{\arg \min } \int_{0}^{1}\left\|S_{\text {annulus }}(u)-S_{\text {ring }}(u+\varphi)\right\|_{2}^{2} d u$
u : Normalized arc length parameter
$\mathbf{S}_{\text {ampusus }}(u)$ and $\mathbf{S}_{\text {ings }}(u)$: 3D annular spline curves φ : A shift in the relative parameterization between curves $\|\cdot\| 2$: Euclidean norm

Surgical Procedure

STEP 2

STEP 1

Preprocessing

Expand the annulus of the post-operative model to align with the pre-operative annulus.

Expansion Routine

Preprocess Animation [click]

\star Aim for Preprocessing:

Obtain a model underwent raphe relaxation and the free margin plication.

Annuloplasty simulation

- Create elastic rings with diameters of 19-27 mm
- Remold the annular plane along the planned routine
- Constrain the annular plane by the elastic rings

Annuloplasty Routine for 23mm Ring

Finite Element (FE) Analysis

Simulate the motion of BAV after annuloplasty within two cardiac cycles

- Material
\checkmark BAV: Mooney-Rivlin hyperelastic model
\checkmark Aorta \& Ring: linear elastic model
- Boundary condition
\checkmark Transvalvular pressure drop curve was applied on the leaflets \checkmark Inlet and outlet of the aorta were fixed
\checkmark Rings could move following the aorta

- Computational Fluid Dynamic (CFD) Analysis

Obtain hemodynamic results at peak systole

- Material
\checkmark Blood: incompressible Newtonian fluid turbulence model
- Boundary condition
\checkmark Aortic Inlet: flow-rate
\checkmark Aortic Outlet: pressure

patient-specific pressure curve

The patient underwent annuloplasty surgery using a 23 mm -sized steel column

Compare the 23 mm annuloplasty simulation model with the post-operative model
| Projection of the annulus on the annular plane

\checkmark The projection shapes were essentially consistent
\checkmark Projected area relative error: 2.84%

【 Coaptation area of the leaflets in a cardiac cycle

\checkmark Maximum values were close
\checkmark Trends of change were consistent

\| Coaptation area of the leaflets

Stress distribution of the valve

- As the annuloplasty ring shrank, leaflet coaptation area increased, lowering stress there.
- Folds at the leaflet root intensified with ring diameter below 23 mm .
- Stress distribution of the aorta root

Pre-operative Model

23 mm Model

27mm Model

21 mm Model

25 mm Model

Wall shear stress of the aorta

- With enhanced annular remodeling, the annular plane experienced stress concentration, leading to an increasement in Mises stress and wall shear stress in the adjacent region.

- Streamline and velocity profile

- As the ring size reduced, flow velocity increased in the sinus and remained unchanged in the ascending aorta.
- Transvalvular pressure drop decreased after annuloplasty.

Other Parameters

For the selected patient:

- Smaller-sized ring have benefit on improving leaflet coaptation area and mitigating of leaflet stress and transvalvular pressure gradient.
- Excessively small ring may result in leaflet folding at the root and wall shear stress increasement at the annular plane region.

Personalized annuloplasty simulation may be a valuable tool to provide optimal size threshold for individual patients before surgery.

