A Novel 3-D Reinforced Graft for VSARR: Hemodynamic Comparison with Conventional VSARRs Using Ex-Vivo Heart Simulator

Novel Reinforced Graft for VSARR

• VSARR is an effective technique to treat aortic root aneurysm or AR in cases with pliable cusps.

However, it remains underutilized due to procedural complexity and difficulty in standardization.

 We developed a novel device consisting of (1) a rigid 3-D coronet-shaped aortic annular skeleton assembled with (2) a woven polyester graft

ision. Leadership. cholarship.

Device Concept and Procedural Flow

- This reinforced 3D frame is designed to attach to the basal ring of the root by a single-layer hemostatic line to obviate the need for basal layer stitches typically required in conventional root reimplantation.
- Without the basal layer stitch, the rigidity of the 3D ring is supposed to hold the basal ring preventing annular dilatation.

The Application of the Novel Device

3-D printed coronet-shaped rigid ring

Final device: assembled ringed graft

Anchoring stitches on the trimmed aortic root

Completed VSARR using the device

3-D Printed Ex-Vivo Left Heart Simulator

The system is comprised of a set of modular 3-D–printed chambers mounted to a pulsatile linear pump with several more adjuncts enclosed

(venous reservoir, a leakless disc valve in the mitral position, a series of compliance chambers, flow meters, a heat exchanger and a peripheral resistance valve).

The hemodynamic settings of the system are controlled by adjustments in compliance and resistance

(heart rate=70 beats/min; effective stroke volume=80mL/beat; cardiac output= 5.6L/min; systolic duration=50%; target mean blood pressure=100mmHg)

Direct measurement of hemodynamic parameters

Study Design and Endpoints

• Primary Endpoint: Aortic regurgitation fraction (the most clinically relevant variable)

• Final 5 samples in each group were determined (Total 15 samples for comparisons)

Non-inferiority design assuming: mean AR fraction of 4.0%, standard deviation of 1.5%, threshold for a difference of 3%; Power=80%, Alpha=0.05 \rightarrow ≥ 4 samples in each group are requires

 Using 5 porcine aortic roots, the novel (Novel), reimplantation (David) and remodeling (Yacoub) techniques were implemented in each of the 5 roots in randomized orders (28mm-straight graft for all) to set the baseline conditions identical.

Secondary Endpoints:

Trans-aortic mean pressure gradient, effective orifice area, trans-aortic energy losses (forward, closing, regurgitant and total) and procedural times

Baseline Characteristics

	Novel	David	Yacoub	P value	
Anatomic parameters, mm					
Annular diameter	25.2±1.5	25.2±1.5	25.2±1.5	1.00	
Commissural height	23.6±2.3	23.6±2.3	23.6±2.3	1.00	
Geometric height, left cusp	25.8±8.6	25.8±8.6	25.8±8.6	1.00	
Geometric height, right cusp	24.6±9.0	24.6±9.0	24.6±9.0	1.00	
Geometric height, non-coronary cusp	25.2±8.7	25.2±8.7	25.2±8.7	1.00	
Free-edge length, left cusp	37.0±10.4	37.0±10.4	37.0±10.4	1.00	
Free-edge length, right cusp	38.8±10.5	38.8±10.5	38.8±10.5	1.00	
Free-edge length, non-coronary cusp	38.0±10.0	38.0±10.0	38.0±10.0	1.00	
Hemodynamic parameters					
Hear rate, bpm	70	70	70	1.00	
Mean arterial pressure, mmHg	100.5±0.3	100.3±0.3	99.6±0.3	0.10	
Systolic blood pressure, mmHg	124.2±0.9	124.4±1.0	124.3 <mark>±1.</mark> 6	0.97	
Diastolic blood pressure, mmHg	78.7±0.7	79.6±0.8	78.5± <mark>1.4</mark>	0.20	
Pump stroke volume, mL	109.9±0.1	109.9±0.1	111.94 <mark>±4</mark> .5	0.39	
Effective stroke volume, mL	81.5±1.4	78.9±1.8	80.49 <mark>±3.</mark> 6	0.28	
Cardiac output, L/min	5.7±0.1	5.5±0.1	5.63± <mark>0.3</mark>	0.28	

Results Summary

	Novel	David	Yacoub	P value			
Primar	y Endpoint			Overall	Novel vs. David	Novel vs. Yacoub	David vs. Yacoub
Aortic regurgitation volume, mL	0.6±0.5	2.6±2.1	6.0±3.3	0.009	0.37	0.007	0.086
Aortic regurgitation fraction, %	1.6±0.8	3.6±2.2	7.1±3.1	0.006	0.34	0.005	0.069
Effective orifice area, cm ²	2.0±0.8	1.4±0.2	1.7±0.4	0.22	0.20	0.72	0.56
Trans-AV mean pressure gradient, mmHg	6.0±2.2	9.4±4.0	4.2±1.3	0.032	0.16	0.57	0.028
Trans-aortic energy loss, mJ						T	
Forward energy loss	118.0±88.5	259.2±97.9	65.0±22.9	0.005	0.034	0.54	0.005
Closing energy loss	8.0±7.0	11.3±4.2	20.8±8.1	0.026	0.72	0.025	0.100
Regurgitation energy loss	5.0±6.8	20.4±26.7	62.3±42.2	0.024	0.69	0.023	0.98
Total energy loss	127.2±93.5	283.9±89.9	190.0±127.3	0.099	0.085	0.62	0.36
Procedural time, min	23.2±6.2	37.8±8.5	15.2±2.3	<0.001	0.008	0.15	<0.001

Fixed effect ANOVA for overall comparisons; Tukey honestly significant difference method for post-hoc comparisons

Aortic Regurgitation Fraction and Trans-aortic Mean Gradient

Effective Orifice Areas and Procedural Times

Forward and Closing Energy Losses

Regurgitation and Total Energy Losses

Conclusions

• Summary of Findings

The VSARR performed using the novel 3D-reinforced graft showed short procedural time and favorable hemodynamic profiles (low AR fraction and pressure gradient) that are non-inferior or even superior to conventional VSARR techniques.

• Perspectives:

Pending further in-vivo experiments and clinical trials, the results from the present research suggest potential clinical utilities of this novel VSARR.

Vision. Leadership. Scholarship.