A novel technique of cerebral-body separate perfursion combine with mild hypothermia during Acute Stanford A Aortic Dissection

Kexiang Liu

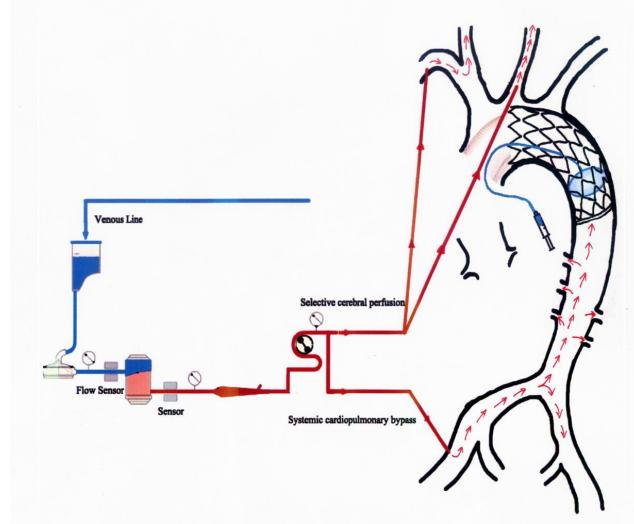
Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China, 130041

Key factors for successful surgical treatment

- Surgical treatment
- Brain protection and other organ protection
- Temperature: intraoperative temperature

Methods of cardiopulmonary bypass in the second hospital of Jilin University

- Arterial intubation: right axillary artery and femoral artery intubation
- Venous intubation: direct intubation of superior and inferior vena cava
- Left ventricular drainage: intubation through right upper pulmonary vein


Study on temperature and organ protection during circulatory arrest

- Is 32 degree during circulatory arrest the limit?
- If raise the temperature above 32 degree, what should we do about organ protection?

Key factors for successful surgical treatment

- Surgical treatment
- Brain protection and other organ protection
- Temperature: intraoperative temperature

Organ protection by brain body separation perfusion under mild hypothermia

Clinical data

- 2018-10 to 2019-9, 88 cases
- Cerebral oxygen saturation monitoring was used to guide the regulation of perfusion flow
- When we summarize, we think the data is not reliable enough, which may be due to each electrode sticking will produce certain errors

Intraoperative data

Time (minute)	Case (176)
Temperature fall time	4.3±0.3
Circulatory arrest time	5.79±0.6
Brain-body separation perfusion time	40.07±8.78
Cerebral perfusion time	46.2±8.6
Aortic cross-clamp time	110.8±21.7
CPB time	141.8±19.3

Superior vena cava oxyg	gen saturation	Inferior vena cava	oxygen saturation	Perfusion
Before CPB:	70.03±11.46 %	Before CPB:	72.53±12.75 %	
5 minutes after CPB :	82.83±8.65 %	5 minutes after CPB :	80.17±16.06 %	2.49
10minutes after Brain-	body separation	10minutes after Bra	ain-body separation	1.73
perfusion: 70.95	5±11.51 %	perfusion: 6	3.95±14.25%	
20minutes after Brain- perfusion : 71.3	body separation 0±9.21 %	20minutes after Bra perfusion: 62	ain-body separation 2.94±14.78 %	1.83
30minutes after Brain- perfusion : 72.0	body separation 3±9.77 %		ain-body separation 3.92±11.84 %	1.82
20 minutes resum 72.74±12.2	e	20 minutes res 64.32±	C	2.44

STAN.

Postoperative results

ltem	Case (176)
Death (cases)	11 (6.25%)
Consciousness recovery time(h)	4.85±1.97
Ventilator assisted ventilation time (hours)	23.8 ± 24.46
CRRT (cases)	19 (10.8%)
Transient consciousness disorder (cases)	4 (2.27%)
Stock (cases)	2 (1.14%)
Paraplegia (cases)	0

Discussion

- Each person's cerebrovascular resistance is different at different temperatures.
- The flow of selective cerebral perfusion at different temperatures is also unknown.
- At present, the flow of selective cerebral perfusion is selected according to experience.

Discussion

- The protection of organs at any temperature cannot be perfect.
- Excessive hypothermia will lead to tissue edema, postoperative brain edema, hypoxemia, postoperative renal insufficiency, and the destruction of coagulation will lead to postoperative bleeding.

Discussion

- The effect of brain protection can be ensured by adjusting the flow of brain body separation perfusion according to the oxygen saturation of superior vena cava.
- At present, no blood transfusion rate during Stanford A aortic dissection in the second hospital of Jilin University is more than 50%