A semi-automated method to obtain metrics of interest to evaluate an Ascending Aortic Aneurysm evolution

Jacques Tomasi^{1, 2}, Pierre Flores¹, Leonardo Geronzi³, Waleed Al Badi¹, Pascal Haigron², Jean-Philippe Verhoye^{1, 2}

University hospital of Rennes, Rennes, France University of Rennes University of Roma, Roma, Italy

Introduction

- Ascending aortic aneurysm
 - 3-4 % of people aged from 65 years old
- Many dissections appear below admitted 50mm diameter max
- Diameter max measurement is insufficient
 - How to identify patients at high risk of rupture or dissection ?
- We present a workflow to obtain new metrics

Methods

91 patients follown up with serial CT-scans

Maximum diameter D Ratio DCR between D and lenght of centerline Ratio EILR between lenght of external and internal lines Tortuosity T

Results

- Positive relationship between growth rate and
 - Diameter D
 - Ratio DCR
 - Ratio EILR
 - Tortuosity T

Results

	DT	LD	LR	NB	SVM	KNN
Accuracy (D)	82%	80%	76%	82%	82%	86%
Accuracy $(D + DCR + EILR + T)$	86%	92%	88%	92%	94%	90%
Sensitivity (D)	33.3%	0%	0%	0%	0%	55.6%
Sensitivity $(D + DCR + EILR + T)$	55.6%	66.7%	66.7%	66.7%	66.7%	55.6%
Specificity (D)	92.7%	97.6%	92.7%	100%	100%	92.7%
Specificity $(D + DCR + EILR + T)$	92.7%	97.6%	92.7%	97.6%	100%	97.6%
LHR+ (D)	4.56	0	0	//	//	7.62
LHR+ $(D + DCR + EILR + T)$	7.62	27.79	9.13	27.79	+∞	23.17
LHR- (D)	0.72	1.02	1.08	1	1	0.48
LHR- $(D + DCR + EILR + T)$	0.48	0.34	0.36	0.34	0.33	0.45

- DT decision Tree, LD linear discriminant, LR Logistic regression, NB naive bayes, SVM support vector machine, KNN k-nearest neighbours
- Diameter alone has a poor accuracy
- Using the 4 measurements SVM has the best accuracy

AUROC between different methods D alone All measurements

Conclusion

- This method provides new metrics of interest
 - Diameter along centerline
 - Lenghts of external and internal curvature
 - Surface
 - Volume
 - Strain and local growth
- Correlation between those metrics and aneurysmal growth can be shown
- Diameter alone is not sufficient to predict aneurysmal growth