A Systematic Quantification of Hemodynamic Differences Persisting After Aortic Coarctation Repair

Christopher Jensen MD MS¹⁻², Arash Ghorbannia PhD¹, David Urick MD¹, G. Chad Hughes MD², and Amanda Randles PhD¹

¹Department of Biomedical Engineering, Duke University, Durham NC

²Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, Durham NC

Background

- Aortic coarctation (CoA) surgical repair has excellent overall survival, but
 - High risk of long-term complications, *e.g.*, restenosis, hypertension
 - Lifelong imaging surveillance necessary for all CoA patients¹⁻²
- Many possible risk factors, but evidence is mixed
 - Incomplete resection?
 - Low birth weight?
 - Abnormal hemodynamics?
 - Underlying tissue defect?

Hypothesis: Small anatomic variations following repair can <u>significantly alter</u> wall shear stress (WSS) and may contribute to restenosis risk

Background – CFD and CoA

- Computational fluid dynamics (CFD) is a powerful tool for modeling CoA¹⁻⁷
 - Nearly 60 studies in last 15 years
- The challenge: isolating effect of anatomy on hemodynamics
 - Multiple confounders: patient age, type of repair, underlying simulation assumptions
- **Goal**: simulate flow in comparable patients while minimizing confounding factors

Gerrah and Haller, "Computational fluid dynamics: a primer for congenital heart disease clinicians." *Asian Cardiovascular & Thoracic Annals* 2020. Reproduced with the consent of the authors.

¹Aslan *et al.*, "Non-invasive prediction of peak systolic pressure drop across coarctation of aorta using computational fluid dynamics." *2020 IEEE Proceedings* ²Guillot *et al.*, "Computational fluid dynamics simulations as a complementary study for transcatheter stent implantation for re-coarctation of the aorta." *Cardiology in the Young* 2019

³Olivieri et al., "Hemodynamic modeling of surgically repaired coarctation of the aorta." Cardiovascular Engineering and Technology, 2011

⁴Ardakani *et al.,* "Isolating the effect of arch architecture on aortic hemodynamics late after coarctation repair: a computational study." *Frontiers in CV Medicine,* 2022 ⁵Keshavarz-Motamed *et al.,* "Elimination of transcoarctation pressure gradients has no impact on left ventricular function or aortic shear stress after intervention in

patients with mild coarctation." JACC: Cardiovascular Interventions, 2015

⁶Keshavarz-Motamed *et al.*, "Fluid dynamics of coarctation of the aorta and effect of bicuspid aortic valve." *PLoS ONE* 2013

7Gounley et al.., "Does the degree of coarctation of the aorta influence wall shear stress focal heterogeneity?"

Methods

- CFD code: HARVEY
 - Massively-parallel solver that uses the lattice Boltzmann method (LBM) to solve the Navier-Stokes equations of fluid flow
- Two patient cohorts:
 - 6 CoA patients after resection with endto-end anastomosis
 - 6 age/sex-matched healthy control patients
 - Models derived from MRI angiograms
- For each patient, simulate 4 restenosis angles:
 - 0%, 10%, 50%, 80%
 - 48 simulations total
- Assumptions:
 - rigid walls (valid for large vessel flow)
 - Newtonian blood flow
 - 0-pressure outlets

Methods

- Simulate 1 cardiac cycle
 - Heart rate: 80 bpm
 - Peak systolic velocity: 45 cm/s
- Spatial resolution: 25 microns
 - Performed on 1,024 CPUs of an institutional high-performance computing (HPC) research cluster
- Primary outcome: time-averaged wall shear stress (TAWSS)
 - Secondary outcome: oscillatory shear index (OSI)

Higher TAWSS in arch and CoA repair site

	CoA (n = 6)	Control (n = 6)	p-value			
Ascending aorta						
TAWSS (Pa)	1.25	1.07	NS			
OSI	0.05	0.06	NS			
Aortic arch						
TAWSS (Pa)	3.46	1.24	<0.0001			
OSI	0.05	0.05	NS			
Coarctation site						
TAWSS (Pa)	4.34	1.56	<0.0001			
OSI	0.04	0.05	NS			
Proximal descending aorta						
TAWSS (Pa)	3.76	1.94	<0.01			
OSI	0.06	0.06	NS			
Distal descending aorta						
TAWSS (Pa)	4.31	2.09 <0.01				
OSI	0.06	0.06 NS				

TAWSS Increases Sharply With Coarctation Severity

• Clear, nonlinear relationship between coarctation severity and TAWSS magnitude

Repaired CoA

Stenosis	$\sigma = 0\%$	$\sigma = 10\%$	$\sigma = 50\%$	$\sigma = 80\%$	<i>p</i> -value		
TAWSS (Pa)	4.34	7.64	24.28	42.70	<0.001		
Matched controls							
Stenosis	$\sigma = 0\%$	$\sigma = 10\%$	$\sigma = 50\%$	$\sigma = 80\%$	<i>p</i> -value		
TAWSS (Pa)	1.56	2.17	12.19	27.99	<0.001		

TAWSS Increases Sharply With Coarctation Severity

Unwrapping the aorta wall into a 2D plane

Region of elevated TAWSS clear as bright band (green arrow)

Jet impinging on distal outer aorta (blue arrow)

Wall Shear Stress is Highly Variable Following CoA Repair

- Healthy aortas
 - Uniform flow
 - Smooth wall shear stress distribution
- Repaired aortas differ greatly
 - Wide range of hemodynamic phenotypes
 - High WSS at the repair site (R0)
 - High WSS in the aortic arch (R2)
 - Or no high WSS at all (R3)
- Intra-cohort correlation:

Healthy controls (very similar)

||ΔTAWSS||₂ (Repairs) 0.82 0,82 0.55 0,82 0.00 0.93 R1- 0.82 0.31 0.63 0.39 0.00 0.42 0.42 0.6 1.00 0.31 0.00 0.76 0.59 0.35 0.59 0.63 0.69 0.73 0.73 R3- 0.82 0.76 0.00 -0.4 0.61 0.59 0.69 0.00 0.59 -0.2 0.42 0.35 0.73 0.61 R5 Median вo R1 R2 ŔЗ Ŕ4

Repaired CoAs (very different)

Discussion

- Many CFD/imaging studies on CoA, but results are inconsistent
- Restenosis = multifactorial process
- CFD simulations must use account for clinical confounders
 - Patient age at repair
 - Type of repair
 - Coarctation anatomy, presence of collaterals, etc.

Abnormalities of Aortic Arch Shape, Central Aortic Flow Dynamics, and Distensibility Predispose to Hypertension After Successful Repair of Aortic Coarctation

Luca Donazzan, MD^1 , Robert Crepaz, MD^1 , Josef Stuefer, MD^2 , and Giovanni Stellin, MD^3

RESEARCH

Open Access

Aortic arch shape is not associated with hypertensive response to exercise in patients with repaired congenital heart diseases

Hopewell N Ntsinjana¹, Giovanni Biglino¹, Claudio Capelli¹, Oliver Tann¹, Alessandro Giardini¹, Graham Derrick¹, Silvia Schievano¹ and Andrew M Taylor^{1,2*}

Conclusion

- Simulated aortic hemodynamics following CoA repair
 - Compared to age/sex-matched controls
- Significantly higher wall shear stress following CoA repair
 - Anatomy normal, but hemodynamics are not
- Small residual stenoses = significantly higher stresses
 - Positive feedback cycle driving restenosis?
- Future work
 - Larger patient cohorts
 - Simulate aortic flow at multiple follow-up points
- Goal
 - CFD + clinical + imaging data \rightarrow restenosis prediction model