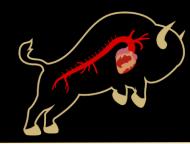
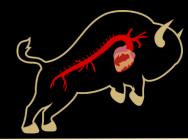

Advancing Post-Surgical Care: Machine Learning Prediction of Red Blood Cell Transfusion After Elective Aortic Surgery

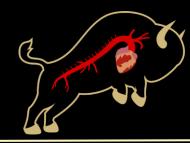

Adam Carroll (1), Nicolas Chanes (1), Michael Kirsch (1), Ananya Shah (1), Muhammad Aftab (1), T. Brett Reece (1)

(1) University of Colorado Anschutz, Denver, CO

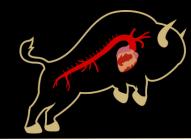
No disclosures



Introduction

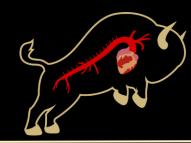

• Post-operative transfusion in cardiac surgery has been linked to adverse post-operative outcomes

• Machine learning models for red blood cell (RBC) transfusion have not been applied to aortic surgery

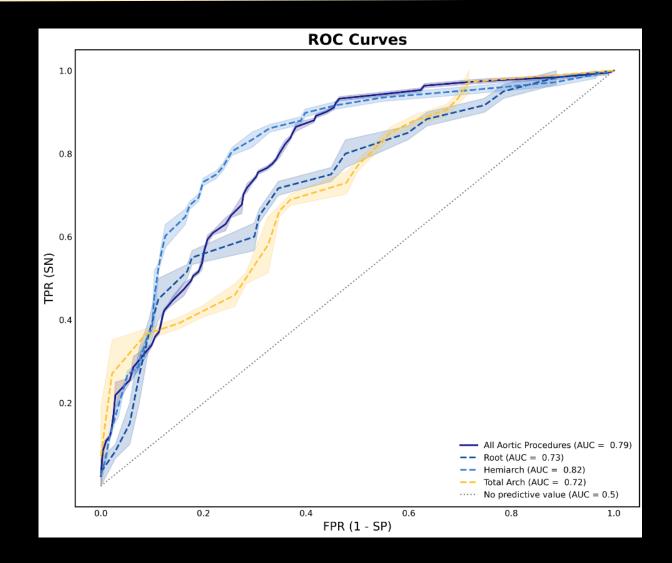


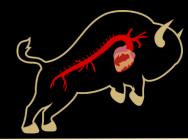
- Develop a machine learning model to predict need for postoperative transfusion in elective aortic surgery
- Assess feature value to determine impact on risk of red blood cell transfusion

<u>Methods</u>

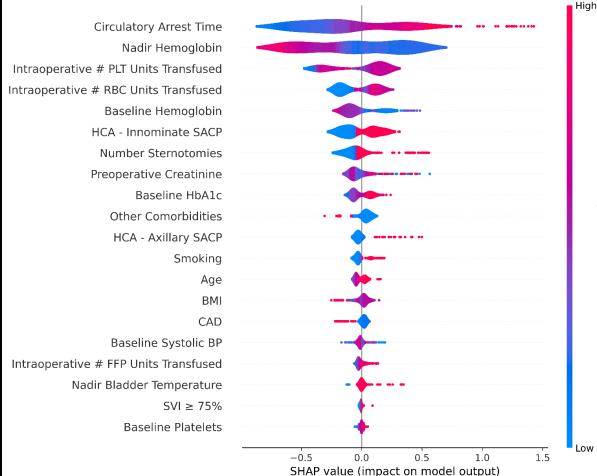

- Retrospective review of aortic database for all patients who underwent elective aortic surgery from 2009 to 2022
- Patients divided into training (70%) and testing (30%) sets with eXtreme gradient boosting (XGBoost) models
- Included 64 input parameters
 - 24 demographic characteristics
 - 8 pre-operative, 32 intraoperative variables
- Assess model performance and accuracy with area under receiver operating curve (AUC-ROC) and precision with area under precision recall curve (AUC-PR, mean average precision)
 - Determine model performance depending on aortic procedure
- Perform feature analysis to determine impact of input parameters

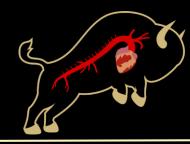
Results


- 543 total patients included in analysis
 - Majority male, Caucasian, aneurysmal pathology, hemiarch replacement
- 265 patients (48.8%) received post-operative RBC transfusion


Age	59 ± 14	Procedure Type	
Male	399 (73.5%)	Root	211 (38.9%)
BMI	28 ± 6	Hemiarch	414 (76.2%)
Baseline Systolic BP	131 ± 19	Total Arch	111 (20.4%)
Baseline Diastolic BP	76 ± 13	Operative Urgency	111 (201170)
Race	105 (00 10())		540 (4000)
Caucasian	435 (80.1%)	Elective	543 (100%)
African American	35 (6.4%)	Adjunctive Procedure	
Asian	11 (2.0%)	No Adjunctive Structural	106 (19.5%)
Hispanic	47 (8.7%)	Procedure	
Other Comorbidities	15 (2.8%)	Aortic Valve Repair	49 (9.0%)
No Comorbidities	20 (3.7%)	Aortic Valve Replacement	151 (27.8%)
Dyslipidemia	209 (38.5%)	Mitral Valve Repair	8 (1.5%)
HTN	355 (65.4%)	· · · · · · · · · · · · · · · · · · ·	, ,
Smoking	129 (23.8%)	Mitral Valve Replacement	5 (0.9%)
Diabetes	54 (9.9%)	Tricuspid Valve Repair	3 (0.6%)
Renal Disease	51 (9.4%)	Tricuspid Valve Replacement	0 (0.0%)
PVD	16 (2.9%)	PFO Closure	15 (2.8%)
Obesity	179 (33.0%)	Aortic Annulus Enlargement	5 (0.9%)
CVA	39 (7.2%)	Afib Procedure	23 (4.2%)
Liver Disease	6 (1.1%)	CABG	38 (7.0%)
Pulmonary Disease	130 (23.9%)	Operative Variables	56 (1.0 %)
CAD	91 (16.8%)	· · ·	
Afib	38 (7.0%)	Nadir Bladder Temperature	27 ± 2
Autoimmune Disease	10 (1.8%)	CPB Time	156 \pm 59
Surgical History		Aortic Cross-Clamp Time	102 ± 48
No Hx of CT Surgery	335 (61.7%)	Circulatory Arrest Time	13 ± 11
Hx of Sternotomy	108 (19.9%)	OR CPB Nadir Hemoglobin	9 ± 2
Hx of Aortic Surgery	83 (15.3%)	Circulatory Arrest Protection	•
Number of Sternotomies	110 (20.3%)		C (1 10/)
Aortic Presentation	474 (07.00)	Straight HCA	6 (1.1%)
Aneurysm	474 (87.3%)	RCP	42 (7.7%)
Dissection	62 (11.4%)	SACP via Axillary	43 (7.9%)
Dissection – Malperfusion Thrombus	2 (0.4%)	SACP via Innominate	241 (44.4%)
Infection	5 (0.9%) 3 (0.6%)	Direct Innominate	2 (0.4%)
Friable	3 (0.6%) 1 (0.2%)	Innominate, Left Carotid	16 (2.9%)
Baseline Labs	1 (0.270)	Intraoperative Blood Products	10 (2.070)
Creatinine	1 ± 1	Intraoperative # RBC Units	2 ± 3
HbA1c	6 ± 1		
Hemoglobin	14 ± 2	Intraoperative # FFP Units	3 ± 4
Platelets	219 ± 64	Intraoperative # PLT Units	1 ± 1
INR	1 ± 0	Intraoperative # Cryo Units	0 ± 1

<u>Results</u>


- XG boost model demonstrated excellent accuracy (AUC-ROC 0.79, AUC-PR 0.56)
- By procedure:
 - Root (AUC-ROC 0.73)
 - Hemiarch (AUC-ROC 0.82)
 - Total Arch (AUC-ROC 0.72)


Results: Feature Impact & Value

- Provides insight into model decision making
- Increased Risk:
 - Extended circulatory arrest
 - Lower pre-operative, nadir hemoglobin
 - Antegrade cerebral protection
 - More intraoperative transfusion of platelets or RBC
 - Prior sternotomy
- Less impact seen by FFP transfusion, bladder temperature, CPB time, thrombocytopenia, social vulnerability (SVI)

Interpreting Violin plot:

- Descending order of impact on model (highest=most impact)
- Color indicates variable value (for categorical variables, yes=high)

<u>Conclusions</u>

- Machine learning model demonstrated excellent performance in predicting patients who would receive post-operative RBC transfusion after elective aortic surgery
 - Strong performance in procedure subsets
- Extended circulatory arrest, usage of antegrade cerebral perfusion, baseline anemia and intraoperative bleeding strongest predictors
- Baseline thrombocytopenia, length of cardiopulmonary bypass, nadir bladder temperature not as impactful

Questions???