Antegrade selective cerebral perfusion in aortic arch surgery: how outcomes change comparing different Kazui's flow? A two-center analysis

Murana G¹, Castagnini S¹, Rajesh K³, Fiaschini C¹, Campanini F¹, Bianco E¹, Hohri Y³, Takayama H³, Pacini D^{1,2}

1. Division of Cardiac Surgery, Cardiac Surgery Department, IRCCS, Azienda Ospedaliero-Universitaria di Bologna

- 2. Department of Medical and Surgical Sciences, DIMEC, Alma Mater Studiorum-University of Bologna, Bologna
- 3. Cardiothoracic Surgery, New York Presbyterian Hospital/Columbia University Irving Medical Center, New York, USA

Background:

Bilateral antegrade selective cerebral perfusion (ASCP) has been shown to be a useful strategy in aortic arch surgery for cerebral protection.

 Aim → To establish the relationship between ASCP average flow and cerebral damage, considering both transient (TND) and permanent (PND) neurological deficits

Study Cohort

All aortic arch surgery from January 2015 to October 2023 at two aortic centers with available data for Kazui flow during ASCP n=712

Low Flow Group (LF): Flow < 10 ml/Kg/min n = 67 High Flow Group (HF): Flow \geq 10 ml/Kg/min n = 652

• Endpoints:

Major postoperative outcomes included in-hospital mortality, temporary neurological deficit (TND), permanent neurological deficit (PND), hemorrhagic and ischemic stroke

Statistical Analysis:

 Chi-square test and T-test have been employed to analyse differences between two groups

 Kaplan-Meier curves have been used to compare late mortality between the two groups

	LF n=67	HF n=645	p
Demographic Characteristics			
Age	62.4 ± 12.7	63.5 ± 12.5	0.612
Female sex	20 (29.9%)	201 (31.2%)	0.962
Bicuspid aortic valve	3 (4.5%)	67 (10.0%)	0.034
Hypertension	55 (82.1%)	465 (72.1%)	0.042
DM	10 (14.9%)	57 (8.8%)	0.118
CKD	6 (9.0%)	52 (8.1%)	0.827
CVD	7 (10.4%)	70 (10.9%)	0.819
Redo	10 (14.9%)	174 (27.0%)	0.010
Aortic Pathology at Presentation			
Aneurysm	18 (26.9%)	325 (50.4%)	< 0.001
Acute TAAD	40 (59.7%)	226 (35.0%)	< 0.001
Chronic TAAD	3 (4.5%)	9 (1.4%)	0.241
Acute TBAD	0	12 (1.9%)	0.001
Chronic TBAD	1 (1.5%)	11 (1.7%)	0.886
IMH	2 (3.0%)	28 (4.3%)	0.585
PAU	0	12 (1.9%)	0.001
Pseudoaneurysm	0	19 (2.9%)	<0.001

Preoperative Characteristics

Values are reported as mean ± st.dev or number (percentage)

	LF n=67	HF n=645	p
Aortic Replacement E	Extension		
Hemiarch	28 (41.8%)	305 (47.3%)	0.467
One-head	2 (3.0%)	9 (1.4%)	0.326
Two-head	4 (6.0%)	41 (6.4%)	0.879
Three-head	32 (47.8%)	288 (44.7%)	0.705
ET	5 (7.5%)	37 (5.7%)	0.591
FET	16 (23.9%)	172 (26.7%)	0.577
Intraoperative feature	25		
CPB time	228.3 ± 68.3	208.5 ± 65.4	0.034
ACC time	138.9 ± 52.2	131.5 ± 50.7	0.350
ASCP time	75.2 ± 53.1	64.1 ± 47.9	0.097
Cannulation Site			
Axillary Artery	8 (11.9%)	104 (16.1%)	0.302
Aorta	24 (35.8%)	196 (30.4%)	0.405
Femoral Artery	24 (35.8%)	142 (22.0%)	0.031
Innominate Artery	8 (11.9%)	163 (25.3%)	0.009
LCCA	4 (6.0%)	42 (6.5%)	0.841

Values are reported as mean ± st.dev or number (percentage)

Surgery

....

Results I: Neurological Outcomes

		LF n=67	HF n=645	р
Stroke		5 (7.5%)	57 (8.8%)	0.680
	Ischemic	4 (80.0%)	31 (54.4%)	0.697
	Hemorrhagic	1 (20.0%)	24 (42.1%)	0.175
PND		6 (9.0%)	61 (9.5%)	0.865
TND		13 (19.4%)	96 (14.9%)	0.270

Values are reported as number (percentage)

Results II: Survival Rates at 60 Months

Follow Up Months

Conclusions

- In aortic arch surgery utilizing ASCP no significative difference has been detected in the incidence of permanent neurological defects (PND) and ischemic stroke in patients with high or low Kazui flow.
- A trend toward a higher hemorrhagic stroke rate was observed in patients who received a higher flow, instead, temporary neurological diseases were higher in low flow group.
- Overall survival was comparable between the two cohort of patients.