Aortic valve cusp growth in dilated tricuspid aortic roots

Matija Jelenc ${ }^{1}$, Blaž Jelenc², Sara Habjan¹, Peter Fries ${ }^{3}$, Thomas Foley ${ }^{4}$, Hector Michelena ${ }^{5}$, Hans Joachim Schäfers ${ }^{6}$
${ }^{1}$ Department for Cardiovascular Surgery, University Medical Center Ljubljana, Slovenia
${ }^{2}$ Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
${ }^{3}$ Clinic for Diagnostic and Interventional Radiology, Saarland University Medical Centre, Homburg/Saar, Germany
${ }^{4}$ Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
${ }^{5}$ Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
${ }^{6}$ Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Centre, Homburg/Saar, Germany

Objectives

- Valve-preserving root replacement aims at normalizing valve form through restoration of root dimensions
- In patients with aortic root aneurysm, the cusps may change in size and shape due to stress imposed by root dilatation
- The purpose of this study was to quantify the differences in cusp size and shape in patients with normal and dilated tricuspid aortic roots and in dilated roots with or without aortic regurgitation

Normal aortic root and aortic valve

$$
(n=213)
$$

anonymized coronary CTA March 2017 - January 2023
bicuspid aortic valve poor contrast motion artefacts
Exclusion
$(n=67)$
poor leaflet visibility leaflet calcifications cusp prolapse
sinuses of Valsalva $\geq 40 \mathrm{~mm}$

Dilated aortic root with or without aortic regurgitation

$$
(n=263)
$$

anonymized coronary or aortic CTA March 2012 - May 2023
bicuspid aortic valv
poor contrast motion artefacts
poor leaflet visibility sinuses of Valsalva < 45 mm

Exclusions
($n=159$)

Propensity score matching (nearest neighbor, 1:1, caliper 0.2)

CTA analysis

Commissural diameter

- Commissural diameter = diameter of a virtual circle passing through the three commissures
- Unlike sinutubular junction, which is often absent in dilated roots, the commissural diameter can be measured in all cases

Propensity score matching

Propensity score matching was used to select patients with comparable age, body size and sex using the available demographic data (age, weight, height, body surface area and sex). Nearest neighbor method of matching was used with ratio of $1: 1$ and caliper size was set to 0.2 standard deviation of logit of propensity score (Matchlt algorithm, R Foundation for Statistical Computing, Vienna, Austria)

	Unmatched normal root $\mathbf{(n = 1 4 6)}$	Unmatched dilated root $\mathbf{(n = 1 0 4)}$	P-value	Matched normal root $(\mathbf{n}=73)$	Matched dilated root $\mathbf{(n = 7 3)}$	P-value
Age (years), mean (SD)	$56(13)$	$54(13)$	0.378^{1}	$54(13)$	$54(13)$	0.870^{3}
Male sex	$78(53.4 \%)$	$95(91.3 \%)$	$<0.001^{2}$	$63(86 \%)$	$64(88 \%)$	0.317^{4}
Height (cm), mean (SD)	$172(9)$	$182(19)$	$<0.001^{1}$	$178(8)$	$178(9)$	0.214^{3}
Weight (kg), mean (SD)	$77(16)$	$91(16)$	$<0.001^{1}$	$86(14)$	$86(14)$	0.719^{3}
BSA $\left(m^{2}\right)$, mean (SD)	$1.91(0.23)$	$2.14(0.23)$	$<0.001^{1}$	$2.05(0.19)$	$2.06(0.19)$	0.533^{3}

[^0]
Results - root dimensions

Dilated root

Diagram of mean root dimensions drawn proportionatelly for normal and dilated roots with definitions of different measurements.

	Matched normal roots (n = 73)	Matched dilated roots (n=73)	P-value
Absolute dimensions	$26.0(2.5)$	$28.3(4.4)$	$<0.001^{1}$
Basal ring diameter (mm), median (IQR)	$28.8(2.9)$	$44.3(8.1)$	$<0.001^{1}$
Commissural diameter (mm), median (IQR)	$35.5(4.4)$	$51.1(5.6)$	$<0.001^{1}$
Sinuses of Valsalva diameter (mm), median (IQR)	$20.8(1.9)$	$26.2(4.3)$	$<0.001^{11}$
Valve height (mm), median (IQR)	$16.5(3.6)$	$40.2(16.3)$	$<0.001^{1}$
Root volume (cm³), median (IQR)	$1.11(0.10)$	$1.58(0.23)$	$<0.001^{2}$
Dimensions normalized to basal ring diameter	$1.81(0.22)$	$<0.001^{2}$	
Normalized commissural diameter, mean (SD)	$1.35(0.11)$	$0.92(0.11)$	$<0.001^{2}$
Normalized Sinuses of Valsalva diameter, mean (SD)	$0.79(0.07)$		
Normalized valve height, mean (SD)			

Results - cusp dimensions

Normal root cusp

Dilated root cusp

Diagram of mean cusp dimensions drawn proportionatelly for normal and dilated roots with definitions of different measurements.

	Matched normal roots ($\mathrm{n}=73$)	Matched dilated roots ($\mathrm{n}=73$)	P-value
Absolute dimensions			
Cusp insertion length (mm), median (IQR)	54.7 (4.5)	71.2 (10.6)	<0.001 ${ }^{1}$
Geometric height (mm), median (IQR)	16.7 (1.7)	19.8 (2.3)	<0.001 ${ }^{1}$
Estimated free margin length (mm), median (IQR)	36.0 (3.6)	48.1 (7.9)	<0.001 ${ }^{1}$
Effective height (mm), median (IQR)	8.7 (1.6)	13.6 (2.9)	$<0.001^{1}$
Cusp belly angle (degrees), mean (SD)	24.3 (5.8)	37.3 (8.4)	$<0.001^{2}$
Cusp commissural angle (degrees), mean (SD)	38.0 (4.5)	29.4 (8.6)	$<0.001^{2}$
Dimensions normalized to cusp geometric height			
Normalized cusp insertion length, mean (SD)	3.26 (0.20)	3.64 (0.39)	$<0.001^{2}$
Normalized estimated free margin length, mean (SD)	2.16 (0.19)	2.53 (0.30)	$<0.001^{2}$
Normalized effective height, mean (SD)	0.53 (0.07)	0.66 (0.10)	$<0.001^{2}$

Results - linear regression for cusp geometric height

Multivariable linear regression model with geometric height as the dependent variable was constructed using all (unmatched) patient data ($n=250$, adjusted $R^{2}=0.847$). Commissural diameter was the strongest positive predictor of cusp geometric height, followed by basal ring diameter, body height and male gender. Age had a small negative correlation with geometric height.

Coefficients	Unstandardized	Standard error	Standardized	t	P-value
(Intercept)	0.623	1.760		0.354	0.724
Commissural diameter (mm)	0.167	0.011	0.563	15.728	<0.001
Basal ring diameter (mm)	0.210	0.033	0.264	6.382	<0.001
Height (cm)	0.037	0.010	0.140	3.771	<0.001
Age (years)	-0.021	0.006	-0.097	-3.409	<0.001
Male sex	0.452	0.218	0.073	2.076	0.039

Results - dilated roots and grade of aortic regurgitation

Comparison between dilated roots with mild or no aortic regurgitation (grade 0-1, $\mathrm{n}=29$) and moderate to severe aortic regurgitation (grade $2-4, \mathrm{n}=54$). Cases with single or multiple cusp prolapse were excluded ($\mathrm{n}=21$). The commissural diameter and effective cusp height were significantly larger in patients with aortic regurgitation, however the cusp dimensions were similar in both groups.

	AR grade 0-1 (n = 29)	AR grade 2-4 (n = 54)	P-value
Basal ring diameter (mm), median (IQR)	$29.3(3.2)$	$28.1(4.8)$	0.347^{2}
Commissural diameter (mm), median (IQR)	$41.9(5.8)$	$45.0(6.7)$	0.002^{2}
Sinuses of Valsalva diameter (mm), median (IQR)	$50.6(4.8)$	$52.1(6.3)$	0.231^{2}
Valve height (mm), median (IQR)	$27.2(4.1)$	$25.6(3.4)$	0.057^{2}
Effective height (mm), median (IQR)	$12.7(2.9)$	$14.3(3.0)$	0.004^{2}
Cusp insertion length (mm), median (IQR)	$73.3(7.5)$	$71.6(8.8)$	0.381^{1}
Geometric height (mm), median (IQR)	$20.1(1.7)$	$20.5(2.1)$	0.374^{1}
Estimated free margin length (mm), median (IQR)	$49.0(6.4)$	$48.1(8.0)$	0.782^{2}
Normalized commissural diameter, mean (SD)	$1.44(0.18)$	$1.61(0.21)$	$<0.001^{1}$
Normalized effective height, mean (SD)	$0.63(0.08)$	$0.69(0.09)$	0.005^{1}

${ }^{1}$ Student's t-test, ${ }^{2}$ Mann-Whitney U-test

Conclusions

- in the dilated roots most of the dilatation occurred at the level of the sinuses of Valsalva and the commissures, and it was associated with mild root elongation
- cusps in dilated roots were elongated transversely (increasing free margin lengths and cusp insertion length) and to a lesser degree radially (increasing the cusp geometric height)
- the most important predictor of cusp geometric height was commissural diameter, which was significantly larger in dilated roots
- in patients with dilated roots and no cusp prolapse the functional aortic regurgitation was caused by extensive commissural dilatation and not by inadequate cusp growth
- changes of cusp dimensions exist in correlation with root size which will have to be accommodated in valve-preserving surgery to produce normal aortic valve form

[^0]: ${ }^{1}$ Student's t-test, ${ }^{2}$ Chi-squared test, ${ }^{3}$ Paired samples t-test, ${ }^{4} \mathrm{McNemar}$'s test

