Arterial Cannulation Strategy for Type A Aortic Dissection: A Network Meta-Analysis

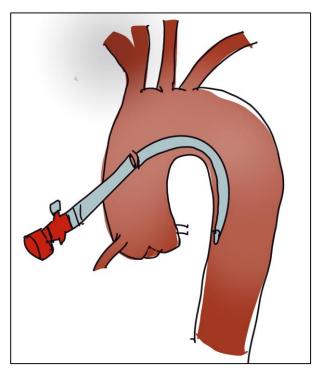
Yujiro Yokoyama: Department of Cardiac Surgery, University of Michigan

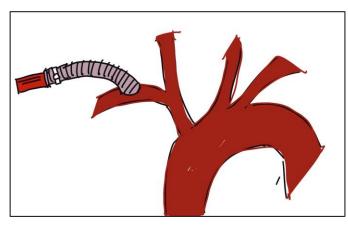
Minami Watanabe: Department of Surgery, Lehigh Valley Health Network, Allentown, Pennsylvania

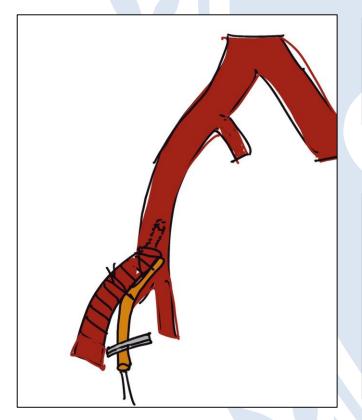
Tomohiro Fujisaki: Department of Cardiovascular Medicine, Kumamoto University, Kumamoto, Japan

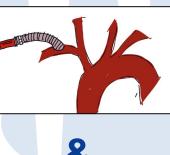
Hisato Takagi: Department of Cardiovascular Surgery, Shizuoka Medical Center, Shizuoka, Japan

Toshiki Kuno: Division of Cardiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York

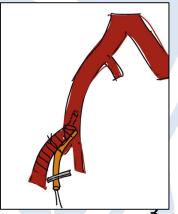

Shinichi Fukuhara: Department of Cardiac Surgery, University of Michigan


Disclosures


- Dr. Fukuhara serves as a consultant and research investigator for Terumo Aortic, Artivion and Medtronic Inc.
- Others have nothing to disclose.


Introduction

Cannulation strategy for acute type A dissection is controversial



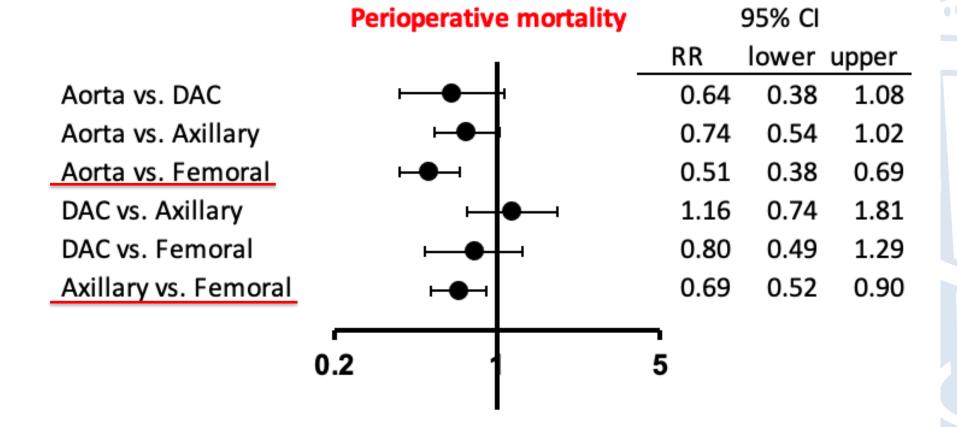
Methods

Network Meta-Analysis

Literature search

- Acute type A dissection
- Cannulation strategies
- Aortic, axillary, femoral or DAC (dual arterial cannulation)

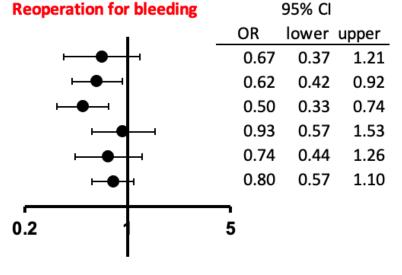
Outcomes of interest

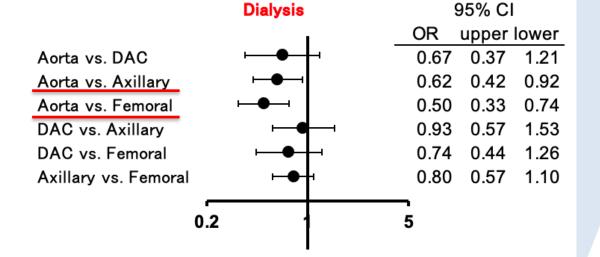

- Perioperative mortality
- Stroke
- Spinal cord injury
- Reoperation for bleeding
- Renal failure requiring HD
- Visceral malperfusion

Results

Author	Year	Adjustment	Patients (n)	Aortic (n)	DAC (n)	Axilla (n)	Femoral (n)
Pasic	2003	None	70	N/A	N/A	20	50
Reuthebuch	2004	None	122	N/A	N/A	62	60
Etz	2008	None	869	157	N/A	451	261
Kamiya	2009	None	235	82	N/A	N/A	153
Haldenwang	2012	None	122	15	N/A	92	15
Lee	2012	None	111	N/A	N/A	58	53
Schurr	2013	None	290	N/A	N/A	114	176
Klotz	2015	None	177	94	N/A	N/A	83
Hsu	2016	None	51	N/A	N/A	25	26
Klotz	2016	None	235	127	N/A	N/A	108
Stamou	2018	None	305	N/A	N/A	107	198
Gegouskov	2018	None	117	85	N/A	N/A	32
Ma	2018	None	62	33	N/A	N/A	29
Kreibich	2019	IPW	584	355	N/A	101	128
Kusadokoro	2020	PSM	805	52	104	104	104
Ram	2019	None	135	N/A	N/A	51	84
Rosinski	2019	None	775	65	N/A	617	93
Gokalp	2020	None	52	N/A	N/A	30	22
Tong	2021	PSM	646	N/A	N/A	85	85
Zhang	2021	PSM	231	N/A	154	77	N/A
Chang	2022	PSM	776	N/A	388	388	N/A
Liang	2022	IPW	488	N/A	171	217	100
Li	2022	PSM	274	N/A	137	137	N/A
Yousef	2022	Cox	577	490	N/A	54	33
Lemaire	2023	None	135	16	N/A	21	98
Juvonen	2023	PSM	1228	614	N/A	614	N/A
Total			9742	954	850	3425	1991

DAC: dual arterial cannulation, IPW: inverse probability weighting, PSM: propensity-score matched

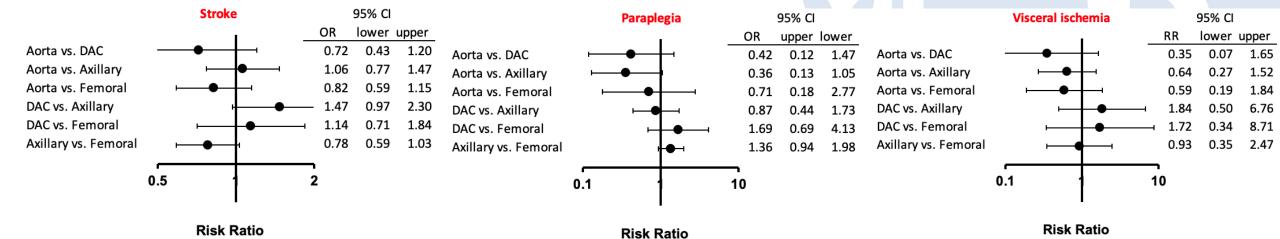

Preoperative outcome


Risk Ratio

Preoperative outcome

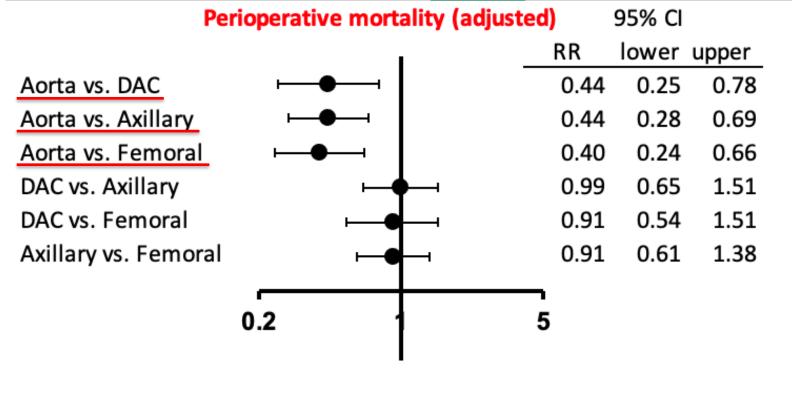
Aorta vs. DAC Aorta vs. Axillary Aorta vs. Femoral DAC vs. Axillary DAC vs. Femoral Axillary vs. Femoral

Risk Ratio

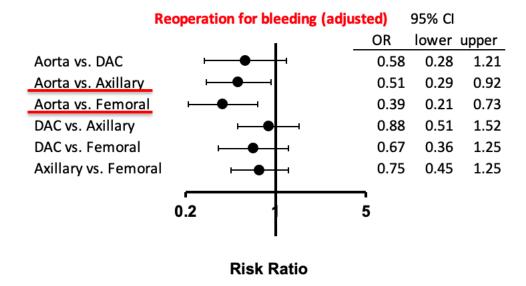


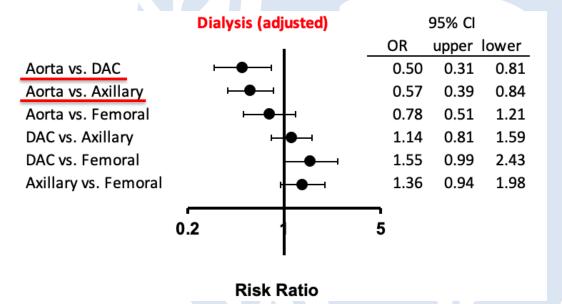
Risk Ratio

....


95% CI

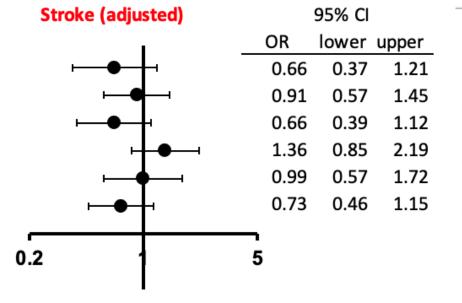
Preoperative outcome

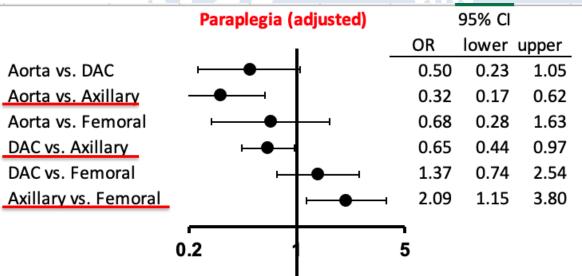

....


Adjusted outcome only

....

Adjusted outcome only




....

Adjusted outcome only

Risk Ratio

Aorta vs. DAC
Aorta vs. Axillary
Aorta vs. Femoral
DAC vs. Axillary
DAC vs. Femoral
Axillary vs. Femoral

Conclusion

 Ascending aortic cannulation for acute type A cannulation might be associated with improved perioperative outcomes compared with other cannulation strategies

Arterial Cannulation Strategy for Type A Aortic Dissection: A Network Meta-Analysis