Association Between Long-term Exposure to Ambient Air Pollution and Hospitalization With Aortic Aneurysm or Aortic Dissection

Kanhua Yin, MD, MPH¹, Yaguang Wei, PhD², and Joel D. Schwartz, PhD²

1 Department of Surgery, University of Missouri – Kansas City School of Medicine, Kansas City, MO

2 Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA

Disclosure

None

Background

- Air pollution is associated with increased risks of cardiovascular diseases
 - Hypertension
 - Coronary heart disease/Myocardial infarction
 - Cardiac arrest
 - Stroke
- Correlation between air pollution and aortic aneurysm are biologically plausik
 - Hypertension
 - Inflammation
 - Oxidative stress
 - Apoptosis of smooth muscle cells -> Degeneration of aortic media

Short-term PM_{2.5} exposure can increase aortic dissection hospitalization

- Lack of high granularity air pollution exposure models
- Prior aortic aneurysm-related studies were mostly small-scale, single-center studies
- Long-term effects of air pollution on aortic aneurysm have never been assessed

Methods – Exposure and Outcomes

Exposure models

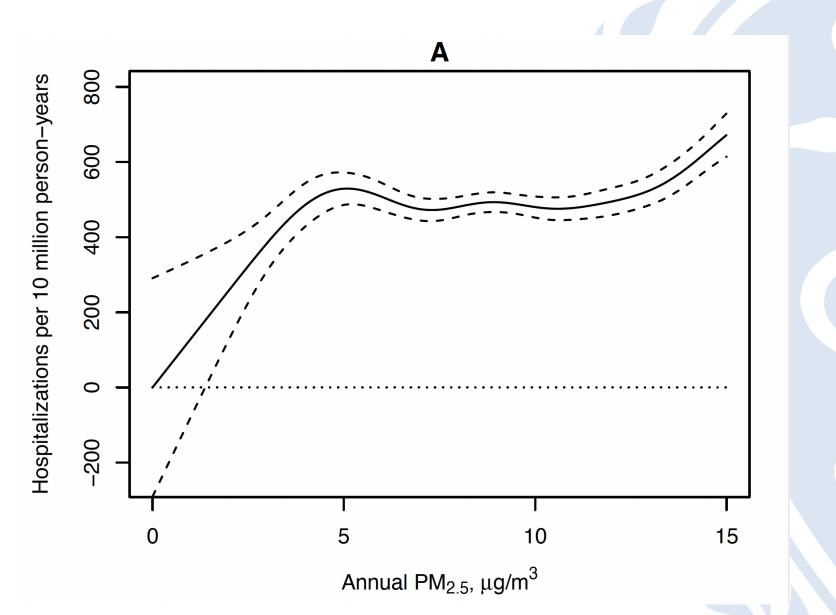
- PM_{2.5}, ozone, and nitrogen dioxide (NO₂) 3 pollutants regulated by EPA
- Satellite data, land use, meteorological, and ancillary variables
- Granularity: 1 km² grid cell; link to ZIP codes
- Three machine-learning models used to estimate annual concertation levels

Hospitalization data

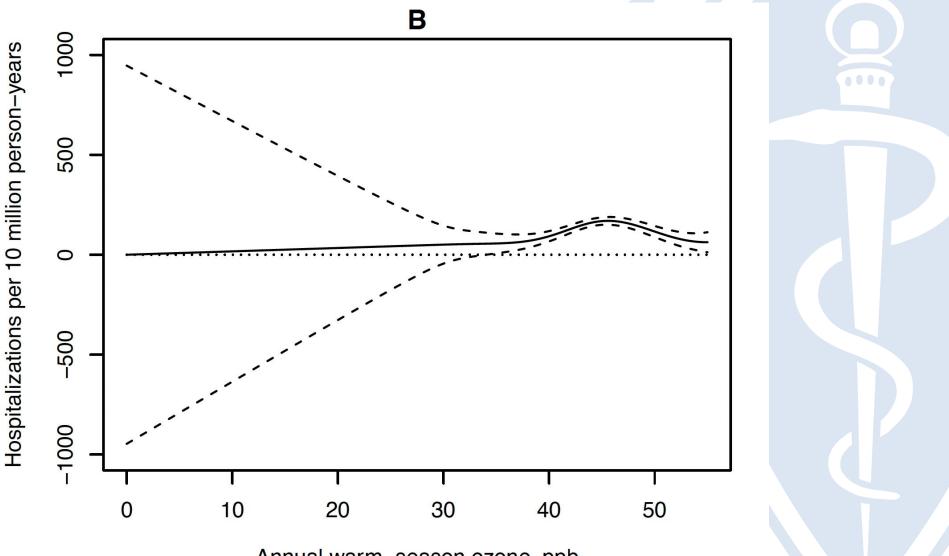
- State Inpatient Databases Hospitalization data on ZIP code level
- 14 states AZ, CO, DE, FL, GA, KY, MD, MI, NC, NJ, NY, RI, WA, WI
- 2000-2016 (limited by exposure data)
- Aortic aneurysm/dissection related hospitalizations ICD 9 (441), ICD 10 (I71)

Methods – Analysis and Modeling

- Potential confounders adjusted
 - Patient demographics Age, sex, race,
 - Neighborhood-level covariates Population density, age, poverty rate, …
 - Seasonal temperatures during summer and winter
- Linear regression analysis
 - Point estimates of the effects of three pollutants
- Penalized cubic splines
 - Estimate nonlinear exposure-response relationships

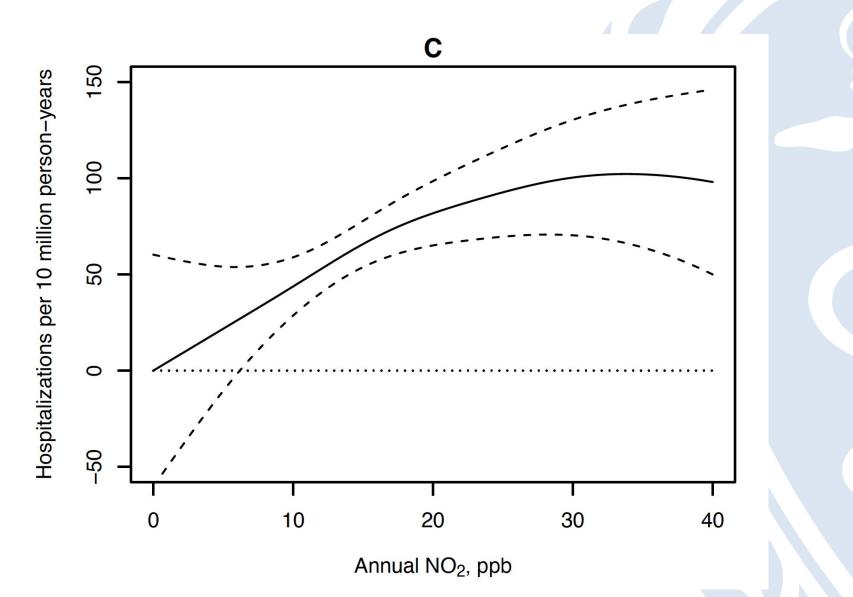

Results – Study Population and Exposure Levels

- 338, 381 aortic aneurysm or aortic dissection-related hospitalizations
 - Mean age = 70.8 years
 - Male = 71.8%
 - Caucasian = 70.0%
- Average annual levels of air pollutants
 - PM_{2.5} = 9.2 µg/m³
 - Ozone = 44.7 parts per billion (ppb)
 - NO₂ = 17.1 ppb


Results – Point Estimates

- PM_{2.5} (each unit increase in annual exposure)
 - In 16.7 additional hospitalizations (95% CI: 10.5, 22.9, p < 0.001) per ten million person-years</p>
- NO₂ (each unit increase in annual exposure)
 - 1.85 additional hospitalizations (95% CI: 0.03, 3.7, p < 0.05) per ten million person-years</p>
- Ozone (each unit increase in annual exposure)
 - 0.86 additional hospitalizations (95% CI: -2.0, 3.7, p = 0.55) per ten million person-years

Results – PM_{2.5} Exposure-Effect Relationships



Results – Ozone Exposure-Effect Relationships

Annual warm-season ozone, ppb

Results – NO₂ Exposure-Effect Relationships

- Long-term exposures to PM_{2.5} and NO₂ are independently associated with an elevated risk of aortic aneurysm/dissection hospitalizations
- A clear exposure-effect relationship is observed for PM_{2.5} and NO₂
- Air pollution may be associated with the development or progression of aortic aneurysm/dissection