Cerebral Protection with Deep Hypothermic Circulatory Arrest during Total Arch Replacement for Acute Aortic Dissection

Yasunori Cho

Department of Cardiovascular Surgery, Tokai University School of Medicine, Kanagawa, Japan

Cerebral protection with DHCA in the TAR for AAD

October 2009 - July 2022

Patients undergoing TAR with DHCA (Arch first technique)

Emergent TAR for AAD (n=109)

Scheduled TAR for Aneurysm (n=147)

- 1. Review for perioperative stroke and 30-day mortality
- 2. Analysis of effects of clinical and anatomical features on stroke after TAR for AAD

Clinical variables and outcomes

	AAD (n=109)	Aneurysm (n=147)	<i>P</i> value
Age	63 ± 11	74 ± 9	< 0.001
Gender, male	59 (54%)	121 (82%)	< 0.001
Comatose state	12 (11%)	0	< 0.001
CA time (min.)	37 ± 8	36 ± 6	0.122
New stroke	11 (10%)	3 (2%)	0.005
	Embolism 8	Embolism 3	
	Malperfusion 2		
	LOS 1		
30-day mortality	10 (9%)	2 (1%)	0.003

Cerebral protection with DHCA in the TAR for AAD

· SVC / IVC drainage controls blood pressure.

• Central cannulation in the ascending aorta resolves organ malperfusion.

• DHCA (17.5 °C at venous drainage and the pharyngeal temperature)

Arch first technique

 Retrograde cerebral perfusion at the end of arch vesselanastomosis is performed to flush out air, thrombi, and debris.

Risk factor analysis of stroke after TAR for AAD

	Univariable		Multivariable						
Variables	OR (95%CI)	P value	OR (95%CI)	P value					
Age	1.00 (0.94 - 1.05)	0.867	0.97 (0.90 - 1.06)	0.517					
Gender, male	0.68 (0.19 - 2.38)	0.544	0.57 (0.12 - 2.78)	0.483					
Comatose state	0.79 (0.09 - 6.79)	0.831	0.39 (0.03 -5.56)	0.487					
Asc. Ao thorombi	0.60 (0.16 - 2.16)	0.431	1.51 (0.27 -8.55)	0.641					
Dissected arch vessels									
Double-barreled	22.75 (5.34 - 96.92)	< 0.001	33.02 (4.33 - 252.1)	< 0.001					
Thrombosed	0.26 (0.05 -1.27)	0.097	1.10 (0.14 -8.93)	0.926					
CA time	1.02 (0.95 -1.11)	0.558	0.98 (0.88 - 1.09)	0.704					
Perioperative LOS	0.72 (0.08 -6.11)	0.761	1.74 (0.13 - 24.08)	0.680					

Cerebral protection with DHCA during TAR continues to be an option. Newly developed stroke after TAR for AAD appears to be associated with air emboli deriving from the double-barreled dissection in the arch vessels

* DHCA, deep hypothermic circulatory arrest; TAR, total arch replacement; AAD, acute aortic dissection.

Objective:

- Stroke after total arch replacement (TAR) remains a serious complication.
- To prevent it, deep hypothermia has been used during TAR.
- We evaluate cerebral protection with deep hypothermic circulatory arrest (DHCA) during TAR, particularly for patients with acute aortic dissection (AAD).

Cerebral protection with DHCA in the TAR for AAD

SVC / IVC drainage controls blood pressure.

- Central cannulation in the ascending aorta resolves organ malperfuion.
- DHCA (17.5 °C at the pharyngeal temperature)
- Arch first technique

 Retrograde cerebral perfusion at the end of arch vessel-anastomosis is performed to flush out emboli. October 2009 – July 2022

Patients undergoing TAR with DHCA (Arch first technique)

Scheduled TAR for Aneurysm (n=147)

1. Review for perioperative stroke and 30-day mortality

2. Analysis of effects of clinical and anatomical features on stroke after TAR for AAD

Clinical variables and outcomes

	AAD (n=109)	Aneurysm (n=147)	<i>P</i> value
Age	63 ± 11	74 ± 9	< 0.001
Gender, male	59 (54.1%)	121 (82.3%)	< 0.001
Comatose state	6 (5.5%)	0	0.004
CA time (min.)	37 ± 8	36 ± 6	0.122
Pump time (min.)	269 ± 76	210 ± 34	< 0.001
Stroke	11 (10.1%)	3 (2.0%)	0.005
	Embolism 8	Embolism 3	
	Malperfusion 2		
	LOS 1		
30-day mortality	10 (9.2%)	2 (1.4%)	0.003

Stroke after TAR

Embolism

Malperfusion

Patients with stroke after TAR for AAD

	Age/ Gender	Couse of stroke	Laterality of stroke	Preope. Coma	Asc. Ao thorombi	Dissected arch vessels	CA (min.)	Periope. LOS	GCS	MMT	Outcome
1	57, M	Embolism	bilateral	-	-	Double barreled	48	-	14	2	Transfer
2	60, M	Embolism	bilateral	-	-	Double barreled	43	-	14	4	Transfer
3	79, F	Embolism	bilateral	-	-	Double barreled	31	-	14	4	Transfer
4	53, M	Embolism	bilateral	-	-	Double barreled	44	-	14	4	Transfer
5	66, F	Embolism	right	-	-	Double barreled	23	-	15	4	Transfer
6	48, F	Embolism	bilateral	-	+	Double barreled	46	-	3	0	Transfer
7	61, F	Embolism	bilateral	-	+	none	28	-	11	2	Transfer
8	68, M	Embolism	bilateral	-	+	Double barreled	35	-	2	0	Transfer
9	78, F	Malperfusion	right	+	-	Thrombosed	28	-	12	2	Transfer
10	68, F	Malperfusion	bilateral	-	-	Thrombosed	29	-	3	0	Dead
11	55, M	LOS	left	-	-	Double barreled	48	+	10	4	Transfer

Risk factor analysis of stroke after TAR for AAD

	Univariable		Multivariable		
Variables	OR (95%CI)	<i>P</i> value	OR (95%Cl)	P value	
Age	1.00 (0.94 - 1.05)	0.867	0.97 (0.90 - 1.06)	0.517	
Gender, male	0.68 (0.19 - 2.38)	0.544	0.57 (0.12 - 2.78)	0.483	
Comatose state	0.79 (0.09 - 6.79)	0.831	0.39 (0.03 - 5.56)	0.487	
Asc. Ao thorombi	0.60 (0.16 - 2.16)	0.431	1.51 (0.27 - 8.55)	0.641	
Dissected arch vessels					
Double-barreled	22.75 (5.34 - 96.92)	< 0.001	33.02 (4.33 - 252.1)	< 0.001	
Thrombosed	0.26 (0.05 - 1.27)	0.097	1.10 (0.14 - 8.93)	0.926	
CA time	1.02 (0.95 - 1.11)	0.558	0.98 (0.88 - 1.09)	0.704	
Perioperative LOS	0.72 (0.08 - 6.11)	0.761	1.74 (0.13 - 24.08)	0.680	

Comments:

- Stroke after TAR for AAD was mainly associated with embolism deriving from the arch vessels or ascending aorta.
- In the multivariable analysis, double-barreled dissection in the arch vessels was the only significant risk predictor of newly developed stroke after TAR.
 Air emboli in the blind end of the double-barreled dissection after arch repair appears to cause stroke after TAR for AAD.

Conclusions:

 Cerebral protection with DHCA during TAR continues to be an option, particularly for patients with aneurysm (stroke 2.0%, 30-day mortality 1.4%). Newly developed stroke in patients undergoing TAR for AAD appears to be associated with air emboli deriving from the double-barreled dissection in the repaired arch vessels.