Circulatory Arrest Time Above 30 Minutes have Significantly Detrimental Effects on the Outcomes of Type A Aortic Dissection Repair

Anthony Lemaire (1), Sorasicha Nithikasem (2), Abhishek Chakraborty (3), Alex Rahimi (1), Mark Russo (4), Leonard Lee (5)(1) Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, (2) Rutgers Robert Wood Johnson Medical School, United States, (3) Le Bonheur Children's Hospital, Memphis, TN, (4) Robert Wood Johnson University Hospital, Green Village, NJ, (5) Robert Wood Johnson University Hospital, New Brunswick, NJ (1) Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, (2) Rutgers Robert Wood Johnson Medical School, United States, (3) Le Bonheur Children's Hospital, Memphis, TN, (4) Robert Wood Johnson University Hospital, Green Village, NJ, (5) Robert Wood Johnson University Brunswick, NJ

Background - Type A Aortic Dissection and Repair

Aortic Dissection

- Acute aortic dissection of the ascending aorta is a life-threatening disease that poses a significant challenge for cardiovascular surgeons
- Dissection of the aorta typically occurs when the aortic media separates from the intima

Type A Aortic Repair

- Surgical repair is performed emergently and classically involves the use of <u>Hypothermic</u> <u>Circulatory Arrest</u> (HCA) for proximal aortic repair.
- The impact of circulatory arrest duration on postoperative outcomes is unclear with the critical arrest time leading to increased risk being controversial.

Figure 1

[1] "Aortic dissection," Mayo Clinic, https://www.mayoclinic.org/diseases-conditions/aortic-dissection/symptoms-causes/syc-20369496 (accessed Oct. 6, 2023).

Disclosures

No Disclosures.

Study Objective

Elucidate the pivotal circulatory arrest time that detectably increases surgical complications and leads to poor long term outcomes

Methods

- Retrospective Review of patients who underwent Type A Aortic Dissection Repair from 2016-20 at a high volume academic institution in New Jersey
- Circulatory arrest time groups were stratified by greater and less than 30 minutes
- Outcomes were analyzed using Pearson's Chi-squared, Multivariate Regression, Fisher's Exact, and pooled T-Tests, with significance set at p < 0.05

Demographics

- Age
- Gender
- Race
- Body Mass Index

Comorbidities

- Hypertension
- Hyperlipidemia
- Diabetes Mellitus
- Previous Cerebrovascular Accident
- Atrial Fibrillation
- Congestive Heart Failure
- Smoking History
- COPD / Smoking History

<u>Methods</u>

Primary Outcomes

30 Day Mortality

Length of Stay

12 Month Mortality

30 Day Readmission

ightarrow

•

ightarrow

•

Secondary Outcomes

- Acute Kidney Injury
 - Pericardial or Pleural Effusion
 - Cerebrovascular Accident (CVA)
 - Atrial Fibrillation

Perioperative Characteristics

- Cardiopulmonary Bypass Time
- Cross Clamp Time
- Circulatory Arrest Time
- Deep Hypothermia Temperature
- Cerebral Perfusion Technique

Outcomes Comparing Cerebral Perfusion Techniques

- 30 Day Mortality
- Acute Kidney Injury
- Pericardial/Pleural Effusion
- Cerebrovascular Accident (CVA)
- Atrial Fibrillation

<u>Results</u>

Table 1: Baseline Characteristics And Outcomes						
Variable		Overall (n = 142)	Circulatory Arrest Less than 30 minutes (n= 117)	Circulatory Arrest Greater than 30 minutes (n= 25)	P -Value	
B	aseline Characteristics					
	Age (years) (Median, IQR)	142	69 (56 - 79)	63 (56 - 71)	.032	
	Gender (male) n (%)	97 (68%)	81 (84%)	16 (17%)	.609	
	Gender (female) n %	45 (32%)	36 (80%)	9 (20%)	.609	
	Race (White) (Fisher's Exact) n %	58 (42%)	48 (82%)	10 (17%)	.764	
	Race (African American) n %	19 (14%)	14 (74%)	5 (26%)	.764	
	Race (Asian) n %	12 (9%)	11 (92%)	1 (8%)	.764	
	Race (Hispanic) n %	14 (10%)	12 (86%)	2 (14%)	.764	
	Race (Other)	36 (26%)	29 (81%)	7 (19%)	.764	
	Body Mass Index (Median, IQR)	28 (25 - 32)	28 (25 - 33)	27 (24 - 32)	.284	
Comorbidities						
	Hypertension n (%)	110 (78%)	90 82%)	20 (18%)	0.738	
	Hyperlipidemia n (%)	54 (38%)	45 (83%)	9 (17%)	0.794	
	Diabetes Mellitus Type I/II n (%)	35 (25%)	32 (91%)	3 (9%)	.496	
	Preoperative Atrial Fibrillation n (%)	35 (25%)	30 (86%)	5 (15%)	.42	
	Previous Cerebrovascular Accident n (%)	14 (10%)	9 (65%)	5 (36%)	.074	
	History of Congestive Heart Failure n (%)	14 (10%)	9 (64%)	5 (36%)	.069	
	History of Smoking n (%)	46 (33%)	42 (91%)	4 (9%)	.045*	
	Diagnosis of COPD n (%)	11 (8%)	10 (91%)	1 (9%)	.423	

Significant Results

• History of Smoking (p=.045)

<u>Results</u>

Out	Outcomes					
	30-Day Mortality n (%)	25 (18%)	14 (12%)	11 (44%)	<.001*	
	Postoperative Length of Stay (Days) (Median, IQR)	6 (4 - 12)	6.5 (4 - 12.75)	6 (1.5 - 12.5)	.412	
	30- Day Readmission n (%)	30 (21%)	25 (22%)	5 (21%)	.938	
	12 Month Postoperative Mortality n (%)	19 (13%)	11 (9%)	8 (32%)	.002*	
Perioperative Characteristics						
	Cardiopulmonary Bypass Time (minutes)	135 (105 – 191)	125 (99.5 - 170)	208 (167 – 248)	<.001*	
	Circulatory Arrest Time (minutes) (Median, IQR)	20 (16 - 27)	19 (15 – 23)	47 (38 - 55)	<.001*	
	Cross-clamp Time (minutes) (Median, IQR)	85 (64 - 120)	80 (59 - 110.5)	117 (81.5 - 170.5)	.036*	
	Deep Hypothermia Temperature (Median, IQR)	25 (24 - 25)	25 (24 - 26)	25 (22 - 25.5)	.009*	
	Anterograde Circulatory Arrest Cerebral Perfusion	102 (73%)	83 (81%)	19 (19%)	.946	
	n (%)	10 (12//)	15 (02/7)	2 (170)	046	
	(%)	18 (15%)	15 (85%)	3 (1/%)	.940	
	No Circulatory Arrest Cerebral Perfusion n (%)	19 (14%)	16 (84%)	3 (16%)	.946	
Postoperative Complications						
	Acute Kidney Injury n (%)	27 (19%)	21 (18%)	6 (24%)	.497	
	Postoperative Pericardial/Pleural Effusion n (%)	54 (39%)	45 (39%)	9 (36%)	.770	
	Postoperative Cerebrovascular Accident n (%)	19 (14%)	10 (9%)	9 (36%)	<.001*	
	Postoperative Atrial Fibrillation n (%)	41 (29%)	33 (29%)	8 (32%)	.723	

Significant Results

- 30 Day Mortality (p < .001)
- 12 Month Mortality (p=.002)
- Cardiopulmonary Bypass Time (p < .001) Cross Clamp Time (p=.036)

- Circulatory Arrest Time (p < .001)
- Deep Hypothermic Temperature (p=.009)
 - Postop CVA (p < .001)

<u>Results</u>

Cerebral Perfusion Technique And Postoperative Outcomes							
Variable		No Perfusion	Anterograde	Retrograde			
30-Day Mortality n (9	%)	6 (33%)	12 (12%)	7 (37%)	.006*		
Acute Kidney Injury	n (%)	4 (22%)	20 (20%)	3 (16%)	.881		
Postoperative Pericar	dial/Pleural Effusion n (%)	6 (35%)	34 (33%)	12 (68%)	.015*		
Postoperative Cerebro	wascular Accident n (%)	1 (6%)	13 (13%)	5 (27%)	.161		
Postoperative Atrial H	ibrillation n (%)	4 (22%)	31 (30%)	4 (21%)	.594		
*Indicates significance at p < 0.05, p values reported from Pearson's Chi Square Test unless noted otherwise							

Significant Results

- 30 Day Mortality (p=.006)
- Postop Pericardial/Pleural Effusion (p=.015)

<u>Conclusions</u>

Main Findings

- Circulatory Arrest Times above 30 minutes increase the postoperative risk of
 - Cerebrovascular Accident
 - 30 Day Mortality
 - 12 Month Mortality
- Preoperative Criteria that increase the risk for a Circulatory Arrest Time above 30 Minutes Include
 - History of Smoking
- Neuroprotectant Strategies were not found to be associated with reduced incidence of postoperative CVA in this study
- Retrograde Perfusion is associated with increased risk of 30 day mortality and pericardial/pleural effusion compared to Anterograde Perfusion

Future Directions

•Further investigation into evaluating these patients long term is needed

Comparison of outcomes using different neuroprotectant techniques during circulatory arrest should be performed
Evaluate additional risk factors that increase risk for longer circulatory arrest duration Surgeons should make every attempt to minimize circulatory arrest times, preferably under 30 minutes. Strategies to prevent postoperative cerebrovascular accident should be further explored.

Limitations

Retrospective nature of study

