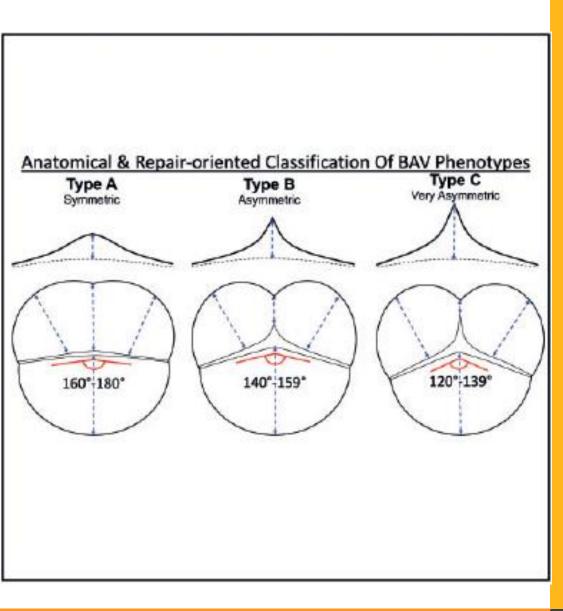
Comparison of Preoperative Aortic Valve Imaging Techniques for Patients with Aortic Insufficiency Undergoing Aortic Valve Repair Surgery


AATS Aortic Symposium 2024

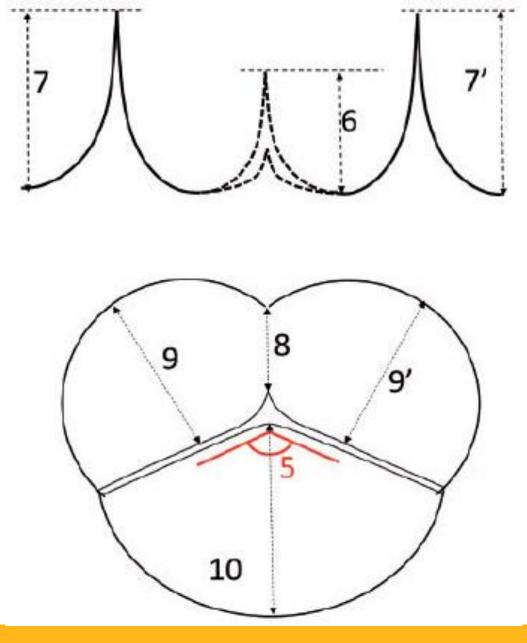
1. Objective

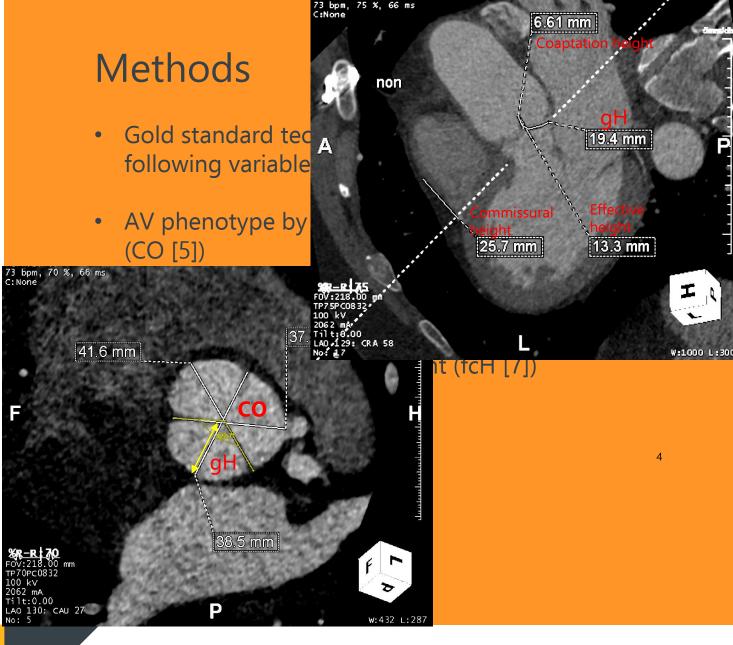
2. Methods

3. Results

4. Conclusions

Objective


- To report the comparative accuracy of pre-repair imaging techniques for determination of bicuspid aortic valve phenotype, using the de Kerchove repair-oriented classification and measurement of **commissural orientation**, **geometric heights** and **functional commissural heights** using:
 - 4D CTA
 - 3D TEE
 - Surgeon's intraoperative measurements


de Kerchove L, Mastrobuoni S, Froede L, et al. Variability of repairable bicuspid aortic valve phenotypes: towards an anatomical and repair-oriented classification. Eur J Cardiothorac Surg. Published online February 20, 2019. doi:10.1093/ejcts/ezz033

Methods

- Prospective, non-randomized, observational design
- Patients undergoing aortic valve repair surgery for predominant aortic insufficiency and/or aortic root aneurysm
- 22 patients accrued over 12 month study period, followed for 3 years postoperatively
- Preoperative 4D CTA and 3D TEE obtained, read by dedicated imaging cardiologists
- Intraoperative measurements from surgeon on the arrested heart pre-repair
- Excluded if aortic valve replacement performed or imaging incomplete

3

de Kerchove L, Mastrobuoni S, Froede L, et al. Variability of repairable bicuspid aortic valve phenotypes: towards an anatomical and repair-oriented classification. Eur J Cardiothorac Surg. Published online February 20, 2019. doi:10.1093/ejcts/ezz033

 $\langle \rangle$

Methods

- Cohen's kappa (κ), Spearman's rank (r_s) and Pearson (r) correlation coefficients were used to describe agreement of phenotype and measurements between gold standard and other measurement techniques
 - $\kappa \leq 0$ indicates no agreement
 - 0.01–0.20 indicates none to slight agreement
 - 0.21–0.40 indicates fair
 - 0.41-0.60 indicates moderate
 - 0.61–0.80 indicates substantial
 - 0.81–1.00 indicates almost perfect agreement

r or $r_s 0 - 0.30$ indicates negligible correlation 0.30 - 0.50 indicates low positive 0.50 - 0.70 indicates moderate positive 0.70 - 0.90 indicates high positive

0.90 – 1.00 indicates very high positive correlation

AV Phenotype		CTA (n)						
		BAV-A	BAV-E	3	BAV-C	TAV		
Intra-op (n)	BAV-A	3		1	1	0		
	BAV-B	0		0	4	0		
	BAV-C	0		0	2	0		
	TAV	0		0	0	9		
	к (95% Cl, p)	0.729 (0.541-0.916, <i>p</i> <0.01)						
AV Phenotype		CTA (n)						
		BAV-A	BAV-E	3	BAV-C	TAV		
TEE (n)	BAV-A	3	0		1	0		
	BAV-B	0	1		0	0		
	BAV-C	0	0		5	0		
	TAV	0		0	0	7		
	к (95% Cl, p)	0.902 (0.719 - 1, <i>p</i> < 0.01)						
CO (degrees)								
	СТА	Intra-op	TEE					
Median (IQR)	120 (116.75, 129.25)	120 (120-150)	109.5 (60.0, 151.0)					
rs (95% CI, p)		0.58 (0.10-0.87, p = 0.01)	0.79 (0.46-0.98, p <0.01)					

Results

- TEE (κ =0.902, p<0.01) was more likely to agree with CTA for AV phenotype than intraoperative assessment (κ =0.729, p<0.01), however both were likely to agree with CTA
- TEE was thus more accurate than intraoperative measurement at predicting CO (r_s =0.79, p<0.01 vs r_s =0.58, p=0.01)

gH (mm)					
	Intra-op	СТА	TEE	СТА	TEE
Median (IQR)	22 (21-25)	19 (17.25-21)	21 (19.25-23.95)	19 (17.25-21)	21 (19.25-23.95)
rs (95% CI, p)		0.31 (-0.3-0.72, p=0.22)	0.22 (-0.21-0.58, p=0.36)		0.40 (-0.14-0.72, p=0.11)
fcH - LN (mm)					
	Intra-op	СТА			
Median (IQR)	30 (26.75-30)	21.7 (19.2-24.43)			
rs (95% Cl, p)		0.02 (-0.34-0.46, p=0.93)			
fcH - LR (mm)					
	Intra-op	СТА			
Mean ± SD	27.4 ± 2.41	23.03 ± 4.83			
r (95% CI, p)		0.27 (-0.54-0.82, p=0.52)			
fcH - RN (mm)					
	Intra-op	СТА			
Median (IQR)	30 (28.5, 30)	25.7 (21.7, 28.68)			
rs (95% Cl, p)		0.06 (-0.44-0.65, p=0.83)			

Results

- Both CTA and TEE were unlikely to predict, and measured shorter than, intraoperative gH measurement
- There was a low positive agreement of gH within CTA and TEE; neither tended to over or underestimate the other
- Measurements of fcH by CTA did not agree with, and were shorter than, intraoperative measurement at all commissures (LN, LR, RN)

Conclusions

- TEE appears more accurate than intraoperative assessment in predicting AV phenotype by measurement of CO compared to the gold standard of CTA (CTA>TEE>intraoperative measurement)
- CTA and TEE did not agree with and predicted shorter gH and fcH than intraoperative measurement (Intraoperative measurement>CTA+TEE)

8