Distinct Biochemical Profile in Human Thoracic Aneurysms with Associated Valve Dysfunction:

Integrative Phosphoproteomic Analysis from the MultiTAAD Multiomic Database

M Elbatarny, U Kuzmanov, D Eliathamby, JCY Chung, C Simmons, AO Gramolini, M Ouzounian, on behalf of MultiTAAD investigators

No Disclosures

Proximal Aortopathy is Frequently Associated with Aortic Valve Dysfunction

Impact of valve function on aneurysm phenotype unknown

Proximal Aortopathy is Frequently Associated with Aortic Valve Dysfunction

Impact of valve function on aneurysm phenotype unknown

AVR fails to prevent progressive aortic dilation: especially in AR-associated aneurysms

Hemodynamics may not be the full story...

Likely additional underlying *molecular mechanisms*

Yasuda et al JTCVS 2003

Objective

Compare *molecular profiles* of *human* aortic *aneurysm* tissues associated with different *valve functional phenotypes*

Subanalysis: MultiTAAD Multiomics of Thoracic Aneurysm & Dissection Database

670 human aortic tissue samples analyzed to date 232 unique individuals; 2 centres

MultiOmics of Thoracic Aneurysm & Dissection Database

Proteomic & Phosphoproteomic Methods

Analysis

Proteomics (All Individual Proteins)

All combinations analyzed

Phosphoproteomics (All Phosphorylation Sites)

Directly Compared Aneurysm proteomic & phosphoproteomic profiles by valve morphology (*Perseus V2.6.0*)

The **biological relevance of differential markers** identified via functional enrichment analyses (*PantherDB, X2KWeb*)

In silico site-specific kinase prediction (GPS 6.0)

Statistical adjustment for clinical & imaging covariates (multivariable regression)

Results: Mixed Valve Disease Aortic & Regurgitation Confer Unique Phenotypes

Total Proteins Quantified 6094

Significantly Different by Valve Type

800 Number of Signifcantly Different Proteins 700 Upregulated 600 Downregulated 500 400 300 200 100 Mixed Valve Mixed Valve AR vs no AR Any Valve Single Valve AS vs no AS AS vs AR Disease vs Disease vs Disease vs Disease vs None Single None None

Significantly Different by Valve Type

Phosphosites Quantified

2125

Valve Phenotype Compared

Valve Phenotype Compared

Results: Mixed Valve Disease & Aortic Regurgitation Confer Unique Phenotypes

Total Proteins Quantified 6094

Proteins

Signifcantly Different

õ

Number

Significantly Different by Valve Type

 Model Value
 AFV STO AR
 Mixed Value
 Ary Value
 Single Value
 AfV STO AR
 AfV STO AR

Significantly Different by Valve Type Phosphosites 210 Different Significantly Δ Signifcantly phosphosites Number of

2125

Phosphosites Quantified

Valve Phenotype Compared

Valve Phenotype Compared

Altered Proteome, Phosphorylation patterns in AR-associated Aneurysms

Cytoskeletal regulatory protein levels are downregulated in AR but phosphorylation levels are altered bidirectionally

Altered Proteome, Phosphorylation patterns in AR-associated Aneurysms

Cytoskeletal regulatory protein levels are downregulated in AR but phosphorylation levels are altered bidirectionally

Biological Function, Kinases, and of AR-associated Proximal Aneurysms

GO Terms in Aortic Regurgitation-associated Aortopathy vs None

Cytoskeletal regulatory activities define differences in phenotype among AR-associated aortic aneurysms

Top Predicted Kinases in AR-associated aneurysms based on All Top Differential Phosphorylation Sites

Top Predicted Kinases for Individual Sites

ID	Position	Code	Kinase	PSP	Score
LMOD1	19	S	TKL	SEDPDIDSLLETLSP	0.3752
LMOD1	19	S	STE	SEDPDIDSLLETLSP	0.0372
LMOD1	19	S	PKL	SEDPDIDSLLETLSP	0.0356
LMOD1	19	S	RGC	SEDPDIDSLLETLSP	0.025
LMOD1	19	S	CK1	SEDPDIDSLLETLSP	0.0103
LMOD1	19	S	CMGC	SEDPDIDSLLETLSP	0.0004
LMOD1	19	S	CAMK	SEDPDIDSLLETLSP	0.0003
LMOD1	19	S	AGC	SEDPDIDSLLETLSP	0.0001

AR-Aneurysms Do Have Distinct Molecular Profiles

But... driven by <u>clinical</u> <u>characteristics</u>?

Clinical Characteristics Compared by AR Status

	No AR	AR	Р
Age	58.7 (14.4)	56.5 (17.8)	0.36
Male	78 (72.9)	57 (81.4)	0.26
BMI	28.17 (5.4)	28.60 (6.0)	0.62
BSA	2.03 (0.3)	1.97 (0.3)	0.13
HTN	73 (68.2)	46 (65.7)	0.85
DLP	51 (48.1)	19 (27.5)	0.011
DM2	10 (9.4)	6 (8.7)	1
Smoking	32 (52.5)	14 (37.8)	0.23
AS	31 (29.0)	11 (15.7)	0.07
EF	60.5 (6.4)	58.4 (5.7)	0.07
AVR	18 (16.8)	18 25.7)	0.21
VSR	34 (31.8)	9 (12.9)	0.007
Bentall	28 (26.2)	31 (44.3)	0.019
RAA	49 (45.8)	33 (47.1)	0.98
Hemiarch	14 (13.1)	16 (22.9)	0.14
Extended Arch	14 (13.1)	7 (10)	0.70
Elephant Trunk	9 (8.4)	2 (2.9)	0.24
Ross	2 (1.9)	7 (10)	0.04
Bicuspid	39 (36.4)	26 (37.1)	1
Diameter			
Root, Indexed	22.2 (3.9)	22.2 (5.2)	0.98
Ascending, Indexed	22.6 (5.19)	25.2 (4.7)	0.001

Clinical Characteristics

AR group ↓ dyslipidemia ↑ Root Replacements ↑ Ascending Diameters

	No AR	AR	Р
Age	58.7 (14.4)	56.5 (17.8)	0.36
Male	78 (72.9)	57 (81.4)	0.26
ВМІ	28.17 (5.4)	28.60 (6.0)	0.62
BSA	2.03 (0.3)	1.97 (0.3)	0.13
HTN	73 (68.2)	46 (65.7)	0.85
DLP	51 (48.1)	19 (27.5)	0.011
DM2	10 (9.4)	6 (8.7)	1
Smoking	32 (52.5)	14 (37.8)	0.23
AS	31 (29.0)	11 (15.7)	0.07
EF	60.5 (6.4)	58.4 (5.7)	0.07
AVR	18 (16.8)	18 25.7)	0.21
VSR	34 (31.8)	9 (12.9)	0.007
Bentall	28 (26.2)	31 (44.3)	0.019
RAA	49 (45.8)	33 (47.1)	0.98
Hemiarch	14 (13.1)	16 (22.9)	0.14
Extended Arch	14 (13.1)	7 (10)	0.70
Elephant Trunk	9 (8.4)	2 (2.9)	0.24
Ross	2 (1.9)	7 (10)	0.04
Bicuspid	39 (36.4)	26 (37.1)	1
Diameter			
Root, Indexed	22.2 (3.9)	22.2 (5.2)	0.98
Ascending, Indexed	22.6 (5.19)	25.2 (4.7)	0.001

Cytoskeletal Regulatory Markers Remain Significantly Associated with Aneurysm Phenotype *after adjustment*

VSR

RAA

Extend

Asc

	No AR	AR	Р
	58.7 (14.4)	56.5 (17.8)	0.36
	78 (72.9)	57 (81.4)	0.26
htly l	28.17 (5.4)	28.60 (6.0)	0.62
itiy	2.03 (0.3)	1.97 (0.3)	0.13
	73 (68.2)	46 (65.7)	0.85
		19 (27.5)	0.011
	10 (9.4)	6 (8.7)	1
	32 (52.5)	14 (37.8)	0.23
	31 (29.0)	11 (15.7)	0.07
	60.5 (6.4)	58.4 (5.7)	0.07
C	Cytoskeleta	l molecu	laroz
chai	nges are <mark>in</mark>	depend	ently
rcn ded Arch 🗧	associated	with AR	in.70
	proximal al	neurysm	S 0.04
ter	39 (36.4)	26 (37.1)	1
t, Indexed ending, Inde	22.2 (3.9) exed 22.6 (5.19)	22.2 (5.2) 25.2 (4.7)	0.98 0.001

Conclusions

- 1st multi-proteomic analysis of aortopathy by aortic valve function on a large cohort of human samples closer to phenotype vs DNA/RNA
- Valve dysfunction, especially AR, is associated with altered aortic tissue biochemistry → loss of cellular contractility
 - Differences observed at both the proteomic and *independently* phosphoproteomic level
- Incorporate valve functional parameters in personalized surgical management of aneurysm
 - Earlier aneurysm repair for AR patients? Surveillance studies required

Acknowledgements

ST. MICHAEL'S UNITY HEALTH TORONTO

SickKids

McLAUGHLIN

CENTRE

Canada Graduate Scholarships Vanier Bourses d'études supérieures du Canada

BIOMEDICAL ENGINEERING UNIVERSITY OF TORONTO

Clinician

Program

Investigator

АВТСАВТС ТСАВТСАВ САВТСАВ САВТСАВ САВТСАВ ВТСАВТСАВ ВТСАВТС САВТСАВТ САВТСАВТС САВТСАВТС ТСАВТСАВТС ТСАВТСАВТС ТСАВТСАВТС ТСАВТСАВТС САВТСАВТ САВТСАВТ САВТСАВТ САВТСАВТ САВТСАВТ САВТСАВТ САВТСАВТ САВТСАВТ САВТСАВТ

TEMERTY FACULTY OF MEDICINE

Senior Leadership Collaborators

<u>Maral Ouzounian</u>

Anthony Gramolini

Bo Wang

Raymond Kim

Jennifer CY Chung

Craig Simmons

Valli Subasri

Sylvain Meloche, Scott Weed, Boris Hinz, Grith Lykke Sørensen, Kevin Lachapelle Richard Leask

Biomechanics

Daniella Eliathamby

Gramolini Lab

Cardiac Centre

Precision Medicine

VECTOR

Physiology

Surgery

Peter Munk

INSTITUTE

UNIVERSITY OF TORONTO

UNIVERSITY OF TORONTO

Uros Kuzmanov Allen TengWenping Li Cristine ReitzOmar Hamed Linda Lu

MultiTAAD Investigators

FOR HEART RESEARCH

Canadian Thoracic Aortic Collaborative

McGill

Artificial Intelligence

Vivian Chu, Rashmi Nedadur

Clinical Samples

Karamvir Deol, Rifat Islam, Amy Tanzia + 7 students

Distinct Biochemical Profile in Human Thoracic Aneurysms with Associated Valve Dysfunction:

Integrative Phosphoproteomic Analysis from the MultiTAAD Multiomic Database

M Elbatarny, U Kuzmanov, D Eliathamby, JCY Chung, C Simmons, AO Gramolini, M Ouzounian, on behalf of MultiTAAD investigators

No Disclosures

