Early Results of Physician Modified Inner Branched Endovascular Repair for Complex Abdominal Aortic Aneurysms

Tsuyoshi Shibata (1), Yutaka Iba (1), Kiyomitsu Yasuhara (2), Noriaki Kuwada (3), Yoshiaki Katada (4), Hitoki Hashiguchi (5), Takeshi Uzuka (6), Tomohiro Nakajima (1), Junji Nakazawa (1), Shuhei Miura (1), Ayaka Arihara (1), Keitaro Nakanishi (1), Takakimi Mizuno (1), Kei Mukawa (1), Nobuyoshi Kawaharada (1)

(1)Sapporo Medical University, Sapporo, Japan, (2) Isesaki Municipal Hospital, Isesaki, Japan,

(3) Kawasaki Medical School, Kurashiki, Japan, (4) Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan, (5) Hokkaido Prefectural Kitami Hospital, Kitami, Japan, (6) Sunagawa City Medical Center, Sunagawa, Japan

To report the midterm outcomes of physician-modified inner branched endovascular repair (PMiBEVAR)

for pararenal aortic aneurysms (PRAAs) and thoracoabdominal aortic aneurysms (TAAAs)

From Dec 2020 to Sep 2023 34 cases of PMiBEVAR Multi center, retrospective

Results

Baseline characteristics

	Overall $(n-34)$	-	Overall (n=34) No. (%), mean ± SD	
Variable	Overall (II–34)	Variable		
	No. (%), mean \pm SD			
Age (years)	78.2 ± 7.6	Aneurysm type		
Male	26 (76.5)	PRAA	7 (20.6)	
Hypertension	29 (85.3)	Crawford extent I	1 (2.9)	
Dyslipidemia	18 (52.9)	Crawford extent II	7 (20.6)	
Diabetes mellitus	6 (17.6)	Crawford extent III	10 (29.4)	
Chronic kidney disease (eGFR < 59)	21 (61.8)	Crawford extent IV	5 (14.7)	
Dialysis	5 (14.7)	Crawford extent V	4 (11.8)	
Coronary artery disease	13 (38.2)	Aneurysm diameter (mm)	64.1 ± 12.6	
Cerebrovascular disease	6 (17.6)	Rupture	7 (20.6)	
Chronic obstructive pulmonary disease	11 (32.4)	Impending rupture	5 (14.7)	
Previous aortic surgery	20 (58.8)			
ASA score ≥ 3	23 (67.6)			
ASA score ≥ 4	6 (17.6)			

Procedure details

Variable	Overall (n=34)		Overall (n=34) No. (%), median, or IQR (25%-75%)	
, united	No. (%), median, or IQR (25%-75%)	Variable		
Modified main device	34			
Relay Plus	18 (52.9)	Custom time, min	90 (60-100)	
Zenith alpha thoracic	7 (20.6)	Contrast volume, mL	152 (106-250)	
Zenith alpha abdominal	5 (14.7)	Fluoroscopy time, min	128 (71-184)	
Tx2	2 (5.9)	Total radiation dosa, mGy	2533 (1238 4572)	
Valiant Navion	2 (5.9)	Total radiation dose, moy	2555 (1256-4572)	
Main device outer size, Fr	23 (20-24)	Total operative time, min	346 (279-436)	
Inner branch device	72	Estimated blood loss, mL	465 (200-724)	
Viabahn	39 (54.2)	Technical success	32 (94.1)	
Endurant leg	33 (45.8)			
Bridging stent device	72			
VBX	64 (88.9)			
LIFESTREAM	8 (11.1)			
Type of incorporation	98			
Inner branches	72 (73.5)			
Fenestrations	10 (10.2)			
Chimney	1 (1.0)			
Debranch	4 (4.1)			
Coverage	11 (11.2)			

Postoperative outcomes

	Overall (n=34)			
Variable	No. (%), median, or IQR (25%-75%)			
In-hospital death	6 (17.6)			
Any MAE	9 (26.5)			
Myocardial infarction	0 (0)			
Stroke	0 (0)			
New-onset dialysis	3 (8.8)			
Respiratory failure	3 (8.8)			
Bowel ischemia	1 (2.9)			
Paraplegia	1 (2.9)			
Length of in hospital stay, d	12 (9-26)			
Length of ICU stay, d	2 (1-5)			
Postoperative endoleak				
Type Ia+b+c	0 (0)			
Type II	4 (11.8)			
Type IIIa	1 (2.9)			
Type IIIb	1 (2.9)			
Type IIIc	2 (5.9)			
Type IV	1 (2.9)			

All in-hospital death cases

Patient	Age	Type of aneurysm	ASA score	Modification design	Rupture	Operative time, min	Reason for death	Length of hospital stay, d
1	86	Extent II	4	1 inner branch	Yes	314	Sepsis	25
2	87	PRAA	3	2 inner branches and 1 fenestration	No	324	NOMI	13
3	63	Extent III	3	3 inner branches	No	342	NOMI	33
4	73	Extent IV	4	3 inner branches	Yes	385	Rupture	16
5	81	Extent III	3	2 inner branches	No	771	Iatrogenic IVC injury during bi. RA debranching	12
6	84	PRAA	3	1 inner branches	No	468	Rhabdomyolysis	2

All reintervention cases during follow-up

Dations	Type of	Madification design	Timing of secondary		Detail of secondary	Follow-up
Patient	aneurysm	Modification design	intervention, d	<i>Reason for secondary intervention</i>	intervention	term, month
1 Extent III	Extent III	3 inner branches and	25		Cailing for important	12
	1 fenestration	25	THICEL ITOIL IMPETURATION FOR IT KA	Coming for inner branch	15	
2 Extent III	2 inner branches and	6	TIIIcEL from fenestration for rt RA	Coiling for perigraft	12	
	2 fenestrations					
3	Extent III	3 inner branches	111	TIc EL	Additional bridge stent	36
4	Extent IV	3 inner branches	8	Rupture due to TIaEL	Open repair	1
5	Extent II	2 inner branches	20	TIaEL	TEVAR	15
			20			
6	Extent II	3 inner branches	12	TIIIaEL	TEVAR	36
4 5 6	Extent IV Extent II Extent II	3 inner branches2 inner branches3 inner branches	8 20 12	TIAEL TIIII	TEVAR TEVAR	1 15 36

Limitations

- \cdot This was a small study of a series of retrospective design.
- Selection bias may exist, as patients classified as very frail are less likely to undergo surgery due to their compromised general health and functional status.

This study offers lessons that can be applied to treat complex aneurysms.

- PMiBEVAR proves to be a viable approach for treating PRAA or TAAAs in patients
 - at high surgical risk, demonstrating acceptable outcomes at the 2-year mark.
- This technology allows surgeons to tailor surgery to a patient's specific anatomy

without geographic restrictions and manufacturing time delay.

• However, the long-term durability of this approach remains uncertain,

necessitating further large-scale and long-term studies.