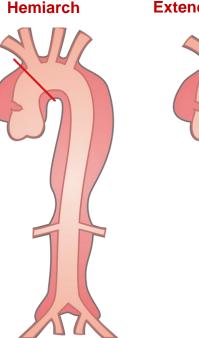

Long-term outcomes and distal aortic remodeling of DeBakey type 1 aortic dissection repair

Caleb Weissman, BS¹; Stephen Thorp, MD²; Matt Lypka², MPH; Holliann Umana³, MD JD; Tomasz Timek, MD PhD²; Stephane Leung Wai Sang, MD MSc²

¹Michigan State University College of Human Medicine, Grand Rapids, Michigan ²Meijer Heart and Vascular Institute, Division of Cardiothoracic Surgery, Corewell Health West, Grand Rapids, Michigan ³Department of Thoracic and Cardiovascular Surgery, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA.

Study objectives

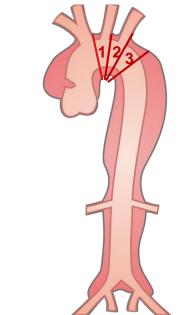
- Compare the clinical outcomes and distal aortic remodeling in patients who had hemiarch repair versus those with an extended arch replacement in patients with DeBakey I acute aortic dissection (AAD).
- 2. All patients were managed post-operatively in a multidisciplinary aortic disease clinic with postoperative imaging surveillance at 1-, 6-, and 12-months, and yearly thereafter.



Corewell Health

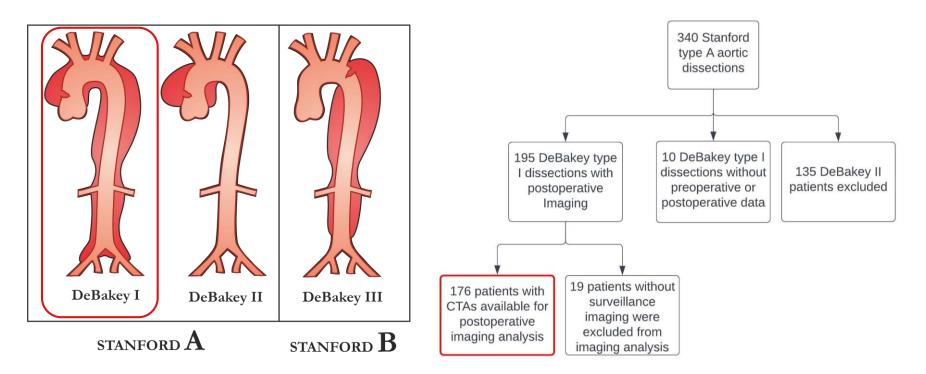
College of Human Medicine

Methods


- 1. All patients undergoing repair of DeBakey type I AAD between January 1, 2000, and January 1, 2021, were retrospectively analyzed
- 2. Patients were separated into hemiarch repair and extended arch replacement groups which included zones 1, 2, or 3 arch replacements with or without elephant trunks
- 3. Distal aortic remodeling was evaluated by assessing growth of the residual aorta as well as false lumen thrombosis on follow-up ECG-gated computed tomographic angiography imaging
- 4. Linear mixed models were used to compare both aortic measurements and follow up year with subject and year follow up included as random effects

Extended Arch Repair

🜔 Corewell Health


College of Human Medicine

Methods

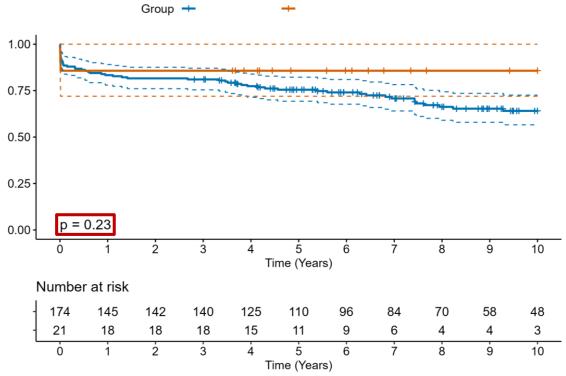
Patient selection

Patient demographics grouped by intervention performed

Demographics:	Hemiarch (n = 174)	Extended arch repair (n = 21)	p-value
Age: mean (SD)	<mark>59.8 (12.3)</mark>	<mark>58.2 (10.6)</mark>	<mark>0.481</mark>
Female: n (%)	<mark>48 (27.6%)</mark>	<mark>5 (23.8%)</mark>	<mark>0.914</mark>
Patient BMI: mean (SD)	30.2 (13.0)	30.9 (6.76)	0.33
Hypertension: n (%)	135 (77.6%)	17 (81.0%)	1.00
Diabetes: n (%)	13 (7.47%)	0 (0.00%)	0.368
Current or former smoker: n (%)	105 (60.3%)	15 (71.4%)	0.600
Chronic lung disease: n (%)	22 (12.6%)	0 (0.00%)	0.138
Renal failure - dialysis: n (%)	3 (1.72%)	0 (0.00%)	1.00
Cerebrovascular disease: n (%)	19 (10.9%)	3 (14.3%)	0.713
Peripheral Arterial Disease: n (%)	47 (27.0%)	7 (33.3%)	0.724
Prior Sternotomy: n (%)	20 (11.5%)	2 (9.52%)	1.00
Transfer from outside hospital: n (%)	<mark>108 (62.1%)</mark>	<mark>15 (71.4%)</mark>	<mark>0.548</mark>
Neurological symptoms: n (%)	<mark>44 (25.3%)</mark>	<mark>5 (23.8%)</mark>	<mark>1.00</mark>
Visceral malperfusion: n (%)	<mark>64 (36.8%)</mark>	<mark>4 (19.0%)</mark>	<mark>0.171</mark>
Limb malperfusion: n (%)	<mark>51 (29.3%)</mark>	<mark>8 (38.1%)</mark>	<mark>0.564</mark>
Shock: n (%)	12 (8.45%)	2 (10.0%)	0.685

Intraoperative data

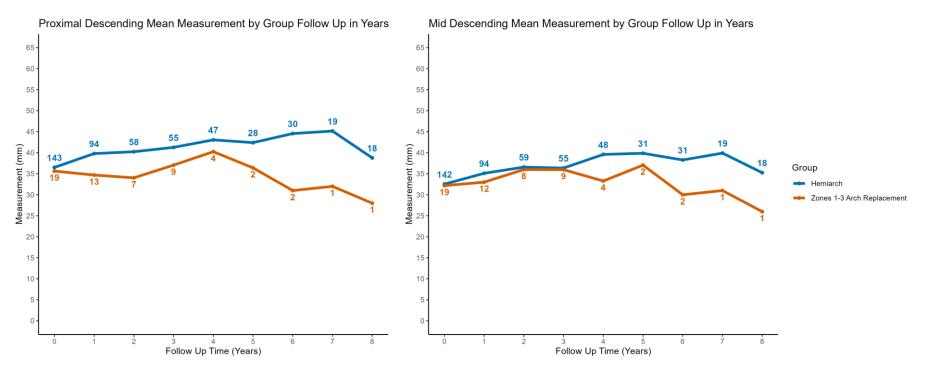
- 1. Similar proximal aortic interventions performed in both groups
- 2. Extended arch replacement patients had significantly longer circulatory arrest, cross-clamp, and bypass times
- 3. Similar cannulation techniques


Intraoperative data:	Hemiarch (n = 174)	Extended arch repair (n = 21)	p-value
Aortic root replacement: n (%)	42 (24.1%)	5 (23.8%)	
Isolated aortic valve replacement: n (%)	10 (5.75%)	0 (0.00%)	0.793
Aortic valve resuspension n (%)	122 (70.1%)	16 (76.2%)	
Lowest intra-op temperature C: mean (SD)	21.3 (4.15)	18.3 (3.71)	0.006
Circulatory arrest time (mins): mean (SD)	31.5 (17.1)	59.7 (22.7)	<0.001
Cross clamp time (mins) (mean (SD)	147 (66.4)	199 (66.5)	<0.001
Cardiopulmonary bypass (CPB) time (mins): Mean (SD)	230 (84.2)	279 (91.3)	0.012
Cannulation Technique: n (%)			
Axillary	95 (54.6%)	16 (76.2%)	0.22
Direct	34 (19.5%)	2 (9.52%)	
Femoral	45 (25.9%)	3 (14.3%)	

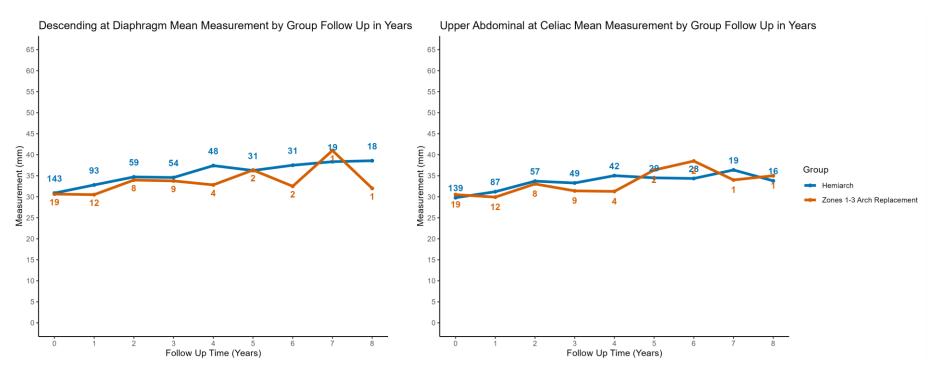
🜔 Corewell Health

College of Human Medicine

Postoperative outcomes	Hemiarch	Extended arch	p-value
-	(n = 174)	repair (n=21)	-
Postoperative atrial fibrillation: n (%)	52 (29.9%)	7 (33.3%)	0.941
Stroke: n (%)	<mark>26 (14.9%)</mark>	<mark>5 (23.8%)</mark>	0.34
Encephalopathy: n (%)	10 (5.75%)	0 (0.00%)	0.604
Renal failure: n (%)	36 (20.7%)	7 (33.3%)	0.262
Dialysis required: n (%)	<mark>28 (16.1%)</mark>	<mark>7 (33.3%)</mark>	<mark>0.069</mark>
Gastrointestinal event: n (%)	30 (17.2%)	2 (9.52%)	0.537
Deep venous thrombosis: n (%)	10 (5.75%)	3 (14.3%)	0.151
Pneumonia: n (%)	20 (11.5%)	4 (19.0%)	0.301
Prolonged ventilation: n (%)	81 (46.6%)	12 (57.1%)	0.492
Tracheostomy-postop: n (%)	<mark>3 (1.72%)</mark>	0 (0.00%)	1
30 Day Mortality: n (%)	<mark>20 (11.6%)</mark>	<mark>3 (14.3%)</mark>	0.752
Mortality-Primary Cause: n (%)			
Cardiac	12 (57.1%)	0 (0.00%)	7
Vascular	4 (19.0%)	1 (33.3%)	0.115
Neurologic	3 (14.3%)	2 (66.7%)	1
Other	2 (11.5%)	0 (0.00%)	1
10-Year mortality: n (%)	55 (31.6%)	<mark>3 (14.3%)</mark>	0.230
Reintervention: n (%)			
1-year:	<mark>2 (1.1%)</mark>	<mark>2 (9.5%)</mark>	0.336
5-year:	<mark>6 (3.4%)</mark>	<mark>3 (14.3%)</mark>	
Thrombosis of false lumen: n (%)	11 (7.19%)	2 (11.1%)	0.631


Postoperative survival – no differences in mortality between groups

Cumulative postoperative mortality			
Time	Hemiarch	Extended arch	
(years)	(n = 174)	repair (n = 21)	
1	29 (16.7%)	3 (14.3%)	
5	42 (24.1%)	3 (14.3%)	
10	55 (31.6%)	3 (14.3%)	


Postoperative distal aortic growth – No difference noted

College of Human Medicine MICHIGAN STATE UNIVERSITY

O Corewell Health

Postoperative distal aortic growth - No difference noted

Linear mixed models of distal aortic progression

Key points:

- Hemiarch patients were the reference group when constructing the models.
- For each region of the distal aorta, analysis was conducted looking at annual diametric growth in both cohorts.
- While the differences between groups were not statistically significant, the annual growth in all regions was significant.

Model annual growth estimates	Growth (mm)	p-value
Proximal descending aorta	0.94	<0.001
Mid descending aorta	1.06	<0.001
Descending aorta at diaphragm	1.11	<0.001
Abdominal aorta at celiac	0.90	<0.001

Conclusions

Key points:

- Similar morbidity and mortality in groups.
- Arch replacement is safe despite technical complexity.
- Lower-than-expected reintervention rate observed in both groups, possibly due to surveillance and management in aortic disease clinic
- Linear mixed models reveal progressive distal aortic growth with no differences between groups.