

Improved Outcomes of Total Arch Replacement: Does Cerebral Perfusion Strategy Matter?

Defne Gunes Ergi, M.D.¹, Alberto Pochettino, M.D.¹, Austin Todd, M.S.², Gabor Bagameri M.D.¹, Juan A. Crestanello, M.D.¹, Kevin L. Greason, M.D.¹, Hartzell V. Schaff, M.D.¹, Joseph A. Dearani, M.D.¹, Nishant Saran M.B.B.S.¹

¹Department of Cardiovascular Surgery, Mayo Clinic, Rochester, Minnesota

²Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, Minnesota

BACKGROUND AND OBJECTIVES

- Total arch replacement is a complex aortic procedure with significant early morbidity and mortality
- Review our institutional experience of total arch replacement (TAR)
- Analyze the short-term and long-term outcomes of TAR

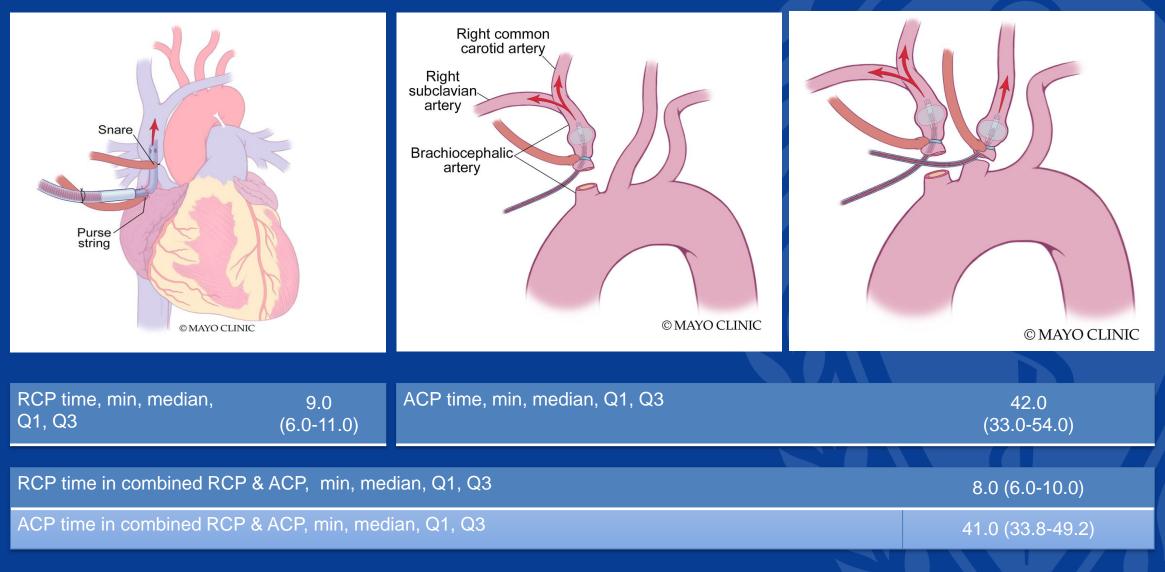
METHODS

- Study period From 1/1993 through 6/2023
- Retrospective analysis of all adult patients (n=334) undergoing TAR
- Median age 64.8 years (IQR, 55.6-73.4), males, n=214, 64.1%
- Marfan syndrome, n= 36 (10.8%), Bicuspid aortic valve, n=47 (14.1%)
- Hypertension, n= 278 (83.5%), Stroke, n= 44 (13.3%)
- Redo surgery, n= 204 (61.1%)

RESULTS – INDICATIONS

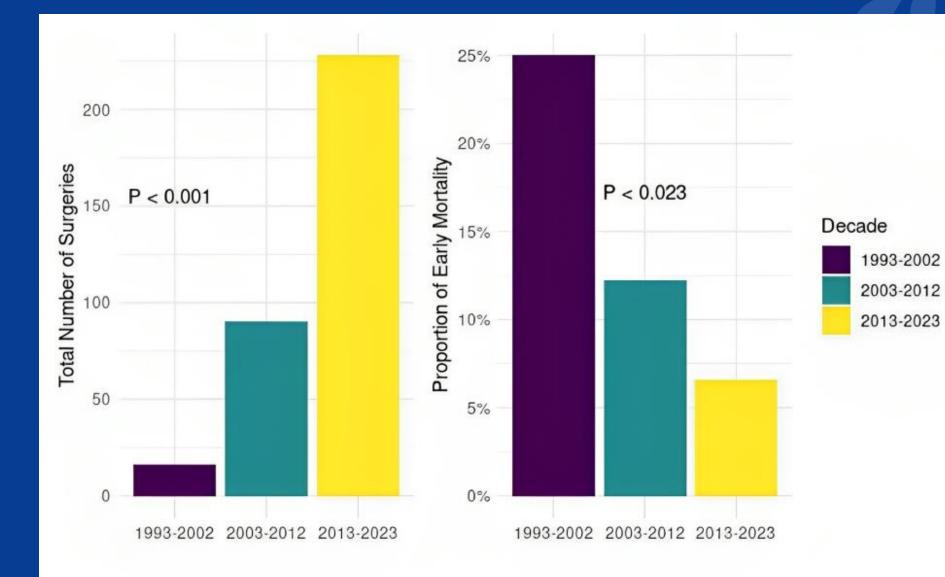
Patients undergoing primary sternotomy	N (%)
Aneurysmal degeneration	120 (92.3%)
Type A dissection	78 (23.3%)
Chronic type B dissection	6 (4.6 %)
Arch transection from blunt trauma	2 (1.5%)
Penetrating ulcer, arch	1 (0.8%)
Patients undergoing repeat sternotomy	N (%)
Patients undergoing repeat sternotomy Dissecting aneurysm	N (%) 97 (51.5%)
Dissecting aneurysm	97 (51.5%)
Dissecting aneurysm Aneurysm	97 (51.5%) 70 (37.2%)

RESULTS – OPERATIVE DATA


Procedure	N (%)
TAR + Frozen elephant trunk	118 (35.2%)
TAR + Classic elephant trunk	116 (34.7%)
TAR + Ascending aorta replacement	204 (61.1%)
TAR + Aortic root replacement	88 (26.3%)
TAR + Ascending aorta replacement + aortic valve resuspension	73 (21.9%)
TAR + Ascending aorta replacement + aortic valve replacement	111 (33.2%)
Three head vessels reimplantation	241 (72.2%)
Two head vessels reimplantation	77 (23.1%)
Single head vessel reimplantation	16 (4.8%)
Cross-clamp time, minutes, median (Q1,Q3)	183.0 (134.0, 238.0)
Cardiopulmonary bypass time, minutes, median (Q1,Q3)	275.0 (231.5, 317.0)
Circulatory arrest time, minutes, median (Q1,Q3)	47.0 (37.0, 60.0)

RESULTS – CEREBRAL PROTECTION

Cerebral protection methods	N (%)
Deep hypothermia (14.1-20 °C) ¹	316 (94.6%)
Moderate hypothermia (20.1-28 °C)	18 (5.4%)
Cerebral perfusion strategy	
Antegrade alone, unilateral	27 (9.5%)
Antegrade alone, bilateral	59 (17.6%)
Retrograde alone	15 (5.2%)
Retrograde, then unilateral antegrade	6 (2.1%)
Retrograde, then bilateral antegrade	177 (62.3%)
Retrograde cerebral perfusion time, minutes, median,Q1,Q3	9.0 (6.0-11.0)
Antegrade cerebral perfusion time, minutes, median,Q1,Q3	42.0 (33.0-54.0)


¹Yan et al. Consensus on hypothermia in aortic arch surgery. Ann Cardiothorac Surg. 2013 Mar;2(2):163-8.

RESULTS – CEREBRAL PROTECTION

RESULTS – EARLY

Variables	N (%)
Blood products	196 (60.3%)
Red blood cells, units, median,Q1,Q3	2.0 (1.0, 5.0)
Fresh frozen plasma, units, median,Q1,Q3	2.0 (2.0, 4.5)
Platelets, units, median,Q1,Q3	1.0 (1.0, 2.2)
Cryoprecipitate, units, median,Q1,Q3	2.0 (2.0, 4.0)
Prolonged ventilation	54 (16.6%)
Renal failure	27 (8.0%)
Extra corporeal membrane oxygenation support	7 (2.0%)
Intensive care unit stay, hours, median,Q1,Q3	65.9 (23.7, 116.8)
Length of hospital stay, days, median,Q1,Q3	9.0 (7.0, 13.0)
Operative mortality	30 (9.3%)

The number of patients undergoing TAR has increased (p<0.001)

&

early mortality decreased (p<0.023) with each successive

decade

9

UNIVARIATE ANALYSIS - EARLY MORTALITY

Variables	Levels	OR (univariable)
Dissection extent into abdominal aorta	No	-
	Yes	5.00 (0.95-21.98, p=0.038)
Number of head vessel implantation	1	-
	2	0.25 (0.06-1.11, p=0.056)
	3	0.27 (0.09-1.04, p=0.036)
Cerebral perfusion	Retrograde and antegrade	-
	Antegrade only	3.14 (1.27-7.99, p=0.013)
	Retrograde only	9.67 (2.59-34.04, p<0.001)
	None	1.68 (0.44-5.42, p=0.405)
Year of surgery	1993-2002	-
	2003-2012	0.42 (0.12-1.69, p=0.187)
	2013-2023	0.21 (0.06-0.83, p=0.015)

STROKE

- Postoperative stroke, n=11 (3.2%)
- Associated with peripheral vascular disease (p=0.029) and repeat sternotomy (0.007)
- Not significantly associated with either cerebral perfusion methods or surgery year

LATE OUTCOMES

- Median follow-up, 5.7 (IQR, 2.8-10.2) years
- Survival at 5 and 10 years was 71% (95%CI 66%-77%) and 54% (95%CI 47%-62%), respectively
- Older age was the only factor independently associated with poorer long-term survival (HR 1.05; 95%CI 1.03-1.06)
- Freedom from reoperation was 96% (95%CI 93%-99%) at 5 years and 92% (95%CI 86%-98%) at 10 years

CONCLUSIONS

- Over the last three decades, our institutional experience in TAR has improved with increasing numbers and declining early mortality rates
- Most patients are undergoing TAR in the setting of repeat sternotomy
- Improved early results may relate to overall increase in institutional experience, dedicated team approach and a combined cerebral protection strategy
- Older age was the only factor independently associated with poorer long-term survival