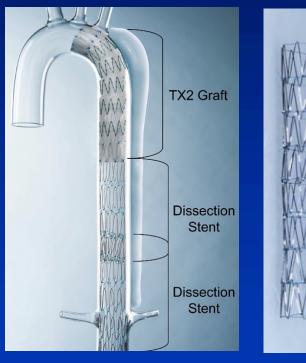
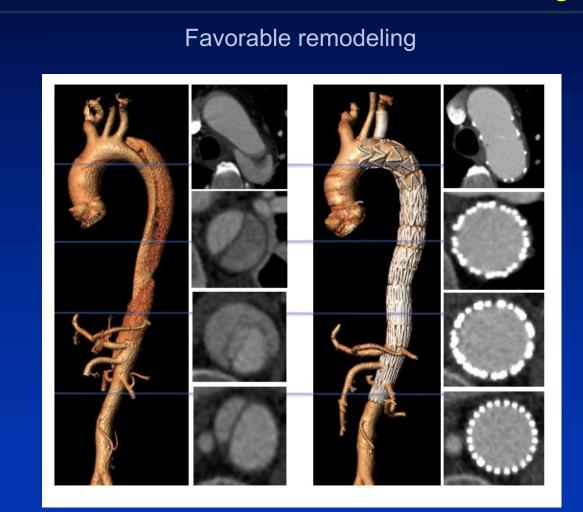
Improving Aortic Remodeling in Dissection: Factors for Success with Thoracic Endovascular Repair and Bare Metal Stent Extension

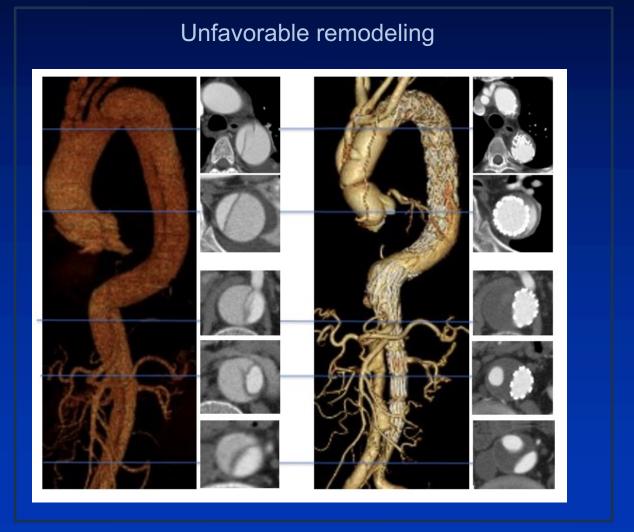

Mio Kasai^a, Kenichi Hashizume^a, Mitsuharu Mori^a, Toshiaki Yagami^b, Tadashi Matsuoka^c, Kiyoshi Koizumi^d, Hiroaki Kaneyama^d, Yuika Kameda^a, Tsutomu Nara^a, Mayu Nishida^a, Misato Tokioka^a, Hideyuki Shimizu^e

- a Department of Cardiovascular Surgery, Saiseikai Utsunomiya Hospital, Tochigi, Japan
- b Department of Radiology, Saiseikai Utsunomiya Hospital, Tochigi, Japan
- c Department of Emergency and Critical Care Medicine, School of Medicine, Keio University, Tokyo, Japan
- d Department of Cardiovascular Surgery, Japanese Red Cross Ashikaga Hospital, Tochigi, Japan
- e Department of Cardiovascular Surgery, School of Medicine, Keio University, Tokyo, Japan

Objective

Provisional ExTension To Induce COmplete Attachment (PETTICOAT)




PETTICOAT involves placing bare metal stents to offer structural support and radial force in the downstream aorta, aiming to improve aortic remodeling.

Our observations reveal divergent outcomes in downstream aorta remodeling, with some cases exhibiting commendable changes and others displaying suboptimal alterations.

J Vasc Surg 2012;55:629-40.

Objective

The primary objective was to enhance predictability and consistency in aortic dissection therapy by identifying patient-related variables impacting remodeling outcomes.

Method

Retrospective review of 299 patients who had TEVAR for both Type B aortic dissections and residual Type B dissections from 2011-2023

A retrospective analysis of 60 consecutive patients who underwent full PETTICOAT for complicated aortic dissections was conducted.

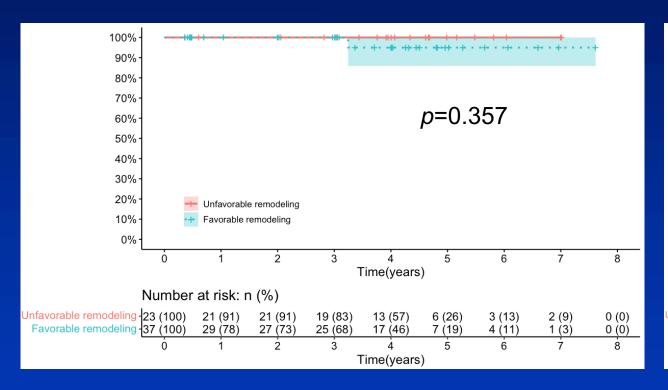
A multivariate logistic regression model identified predictors of favorable aortic remodeling.

PETTICOAT (n=100) No examination n=1 PETTICOAT (n=77) Full PETTICOAT (n=60) Unfavorable Favorable Remodeling Remodeling (n=37)(n=23)

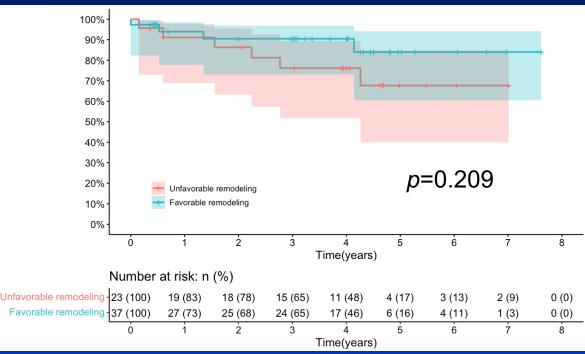
Without PETTICOAT (n=199)

EL from proximal side (n=10) (type1a:2, type2:6, type3:2) Follow up no more than 3 months (n=12)

Baseline and procedure characteristics


	Favorable	Unfavorable	
arameter	Remodeling	Remodeling	p Value
	(N=37)	(N=23)	
ge	58.2±9.6	52.0±8.5	<u>0.012</u>
ale gender	26(70.3%)	20(87.0%)	0.137
ody mass index	23.9±3.1	23.8±4.3	0.979
/pertension	35(94.6%)	23(100%)	0.376
abetes mellitus	3(8.1%)	2(8.7%)	0.642
noking	15(40.5%)	11(47.8%)	0.387
nronic kidney disease	15(40.5%)	5(21.7%)	0.133
reatinine	0.90±0.27	0.90±0.31	0.979
GFR	73.7±24.6	67.5±26.0	0.357
arfan syndrome	0(0%)	0(0%)	N/A
dication for TEVAR			
Dilatation	14(37.8%)	14(60.9%)	0.082
Malperfusion	12(32.4%)	2(8.7%)	<u>0.035</u>
Preemptive	11(29.7%)	6(26.1%)	0.761
uration from onset to EVAR (days)	63.8±49.3	147.8±357.3	0.162
nergent case	6(16.2%)	0(0%)	<u>0.046</u>
ssection acuity			
Acute 2w>	10(27.0%)	2(8.7%)	0.078
Subacute 2w<, 3M>	17(45.9%)	14(60.9%)	0.261
Chronic 3M<	10(27.0%)	7(30.4%)	0.776
anford type A(residual B)	19(51.4%)	16(69.6%)	0.164
anford type B	18(48.6%)	7(30.4%)	0.164

Parameter	Favorable Remodeling (N=37)	Unfavorable Remodeling (N=23)	p Value
Preopertive medication			
Coumadine	1(2.7%)	0(0%)	0.617
Aspirin	4(10.8%)	2(8.7%)	0.58
ARB	18(48.6%)	7(30.4%)	0.164
Preoperative CT findings			
Visceral arteries arising from false lumen	2.1±1.1	2.1±1.2	0.9
Both (right and left) iliac arteries dissection	16(43.2%)	11(47.8%)	0.729
Area of true lumen at abdominal aorta	151.1±63.2	159.1±79.1	0.667
Area of aortic lumen at abdominal aorta	362.4±111.2	418.1±91.8	<u>0.049</u>
Over sizing at the distal end of stent graft	36(97.3%)	19(82.6%)	0.066


Parameter	Favorable Remodeling (N=37)	Unfavorable Remodeling (N=23)	p Value
Early outcomes			
Stroke	0(0%)	0(0%)	N/A
Mesenteric ischemia requiring bowel resection	0(0%)	0(0%)	N/A
Retrograde type A	1(2.7%)	0(0%)	0.596
Spinal cord ischemia	0(0%)	0(0%)	N/A
30 day mortality	0(0%)	0(0%)	N/A
1 year mortality	0(0%)	0(0%)	N/A

Parameter	Favorable Remodeling (N=37)	Unfavorable Remodeling (N=23)	p Value
Late outcomes			
False lumen and visceral intervention	4(10.8%)	0(0%)	0.288
Open surgical intervention	1(2.7%)	0(0%)	0.596
Aortic reintervention	3(8.1%)	1(4.3%)	0.502
Aortic related death	1(2.7%)	0(0%)	0.596
All cause death	1(2.7%)	0(0%)	0.596
Downstream Aortic Event			
Downstream Aortic related death	0(0%)	0(0%)	N/A
Reintervention to Downstream Aorta	1(2.7%)	1(4.3%)	1.000
Distal Stent Induce New Entry	3(8.1%)	6(26.1%)	0.065

Freedom from Aortic-related Death

Downstream Aortic Event Free

Multivariate Fixed Effects of Factors on Favorable Remodeling

Parameter	HR (95% CI)	p Value
acute(<2w)	5.41 (0.71 - 41.04)	0.103
elderly(>60y)	9.02 (1.80 - 45.09)	0.007
stent over sizing at down stream aorta (>75% of aortic lumen)	12.72 (1.12 - 145.18)	0.041
preoperative area of aortic lumen <450mm2	5.74 (1.13 - 29.11)	0.035
ARB	6.55 (1.44 - 29.79)	0.015

Discussion

Older patients exhibit superior remodeling, possibly due to age-related aortic structural changes.

<u>Stent graft sizing</u> debates persist, evolving from <10% to up to <u>20%</u> <u>oversizing in diameter of the true lumen</u>, with a 46mm bare stent now accepted.

Terminal aorta diameter pre-intervention proves a significant predictor, with <450 mm² (a diameter of approximately 24mm) as a meaningful cutoff.

ARB therapy shows promise, slowing aortic growth.

Distal reentry's significance varies in our series, potentially due to the bare metal stent's role. Acute cases trend toward better aortic remodeling.

Conclusion

The PETTICOAT concept proves highly effective in the management of complex aortic dissections, prioritizing favorable aortic remodeling.

Predictors for favorable remodeling, including age, stent graft sizing, aortic diameter, and ARB therapy, offer insights for optimizing patient selection.

This approach improves survival outcomes, mitigates risks associated with untreated aortic segments, and provides a minimally invasive solution for aortic dissections.

Despite some outcome variations, the technique holds promise for addressing the challenges of aortic dissections, with the potential for further refinement in patient selection and technique application.