AATS Aortic Symposium Workshop New York 2024 April 25 - 26, 2024

In Vivo MRI-based Parameters of Aortic Biomechanics Correlate with Aortic Tissue Properties Measured Ex Vivo

Jennifer Chung^{1,2}, Hijun Seo^{2,3}, Nitish Bhatt¹, Farshad Tajeddini^{1,4}, Maral Ouzounian¹, Kate Hanneman¹, Rifat Islam¹, Craig A. Simmons^{2,3,4}

¹Division of Cardiovascular Surgery University Health Network, ²Institute of Biomedical Engineering University of Toronto, ³Translational Biology and Engineering Program Ted Rogers Centre for Heart Research, ⁴Department of Mechanical and Industrial Engineering University of Toronto, ⁵Rogers Computational Program Peter Munk Cardiac Centre University Health Network, ⁶Division of Vascular/Interventional Radiology, University Health Network

TRANSLATIONAL BIOLOGY AND ENGINEERING PROGRAM

Introduction

- Aortic event rates associated with aneurysms of the ascending aorta are low ~2%/patient year.
- Identifying those at elevated risk of dissection/sudden death and candidates for elective preventative surgery is challenging.
- The ability to measure an individual's aortic biomechanics would be extremely helpful.
- Aortic biomechanics describe material properties of the ascending aorta, including its degree of fragility and risk of material failure.
- We aim to validate MRI-based aortic biomechanics against ex-vivo tissue testing

Methods: Workflow

Patients undergoing elective ascending aortic surgery N=17 Healthy volunteers undergoing research MRI only N=4

Several MRI-based aortic biomechanics parameters are derived:

- strain-based
- aPWV
- kinetic energy loss

Several ex-vivo aortic biomechanics parameters are derived:

- tangent modulus of elasticity
- energy loss
- delamination strength

Methods: MRI

 Stiffness: extent to which tissue resists deformation in response to hemodynamic loads

Parameters based on area and pressure

Methods: MRI

 Aortic Pulse Wave Velocity: Speed of fluid wave propagation through a vessel – related to stiffness

Methods: MRI

• Kinetic Energy Loss (KEL): Fraction of energy dissipated between aortic loading and unloading (*efficiency of the elastic aorta*)

TRANSLATIONAL BIOLOGY AND ENGINEERING PROGRAM

Methods: Ex-Vivo Biomechanics

Methods: Ex-Vivo Biomechanics

TRANSLATIONAL BIOLOGY AND ENGINEERING PROGRAM

Association between Strain, Distensibility and Compliance and ex-vivo aortic biomechanics

Weak correlations were found between Strain and Compliance versus Delamination strength but otherwise no other correlations were found.

Association between Arterial Stiffness Index and ex-vivo aortic biomechanics

Greater ASI was associated with increased Energy Loss and decreased Delamination Strength

Association between Aortic Pulse Wave Velocity and exvivo aortic biomechanics

Greater aPWV was associated with decreased tangent modulus of elasticity, increased energy loss and decreased delamination strength

Association between Kinetic Energy Loss and ex-vivo aortic biomechanics

Greater KEL was associated with increased energy loss and decreased delamination strength

Conclusions

- For the first time, MRI-based aortic biomechanics have been validated against ex-vivo aortic biomechanics
- Most strain-based measurements of aortic biomechanics by MRI correlate weakly with ex vivo aortic biomechanics
- Arterial stiffness index, Aortic Pulse Wave Velocity and Kinetic Energy Loss are MRI-based aortic biomechanics that correlate very well with ex-vivo aortic biomechanics
- Future work will incorporate these 3 candidate MRI-based aortic biomechanical parameters into multivariable models for improving risk stratification of patients at risk of aortic dissection.

