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Introduction

• Aortic event rates associated with aneurysms of the ascending aorta 
are low ~2%/patient year.

• Identifying those at elevated risk of dissection/sudden death and 
candidates for elective preventative surgery is challenging.

• The ability to measure an individual’s aortic biomechanics would be 
extremely helpful. 

• Aortic biomechanics describe material properties of the ascending 
aorta, including its degree of fragility and risk of material failure.

• We aim to validate MRI-based aortic biomechanics against ex-vivo 
tissue testing
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Methods: Workflow
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Patients undergoing 

elective ascending 

aortic surgery N=17

Healthy volunteers undergoing 

research MRI only

N=4

Several MRI-based aortic biomechanics parameters 

are derived:

- strain-based

- aPWV

- kinetic energy loss

Several ex-vivo aortic biomechanics 

parameters are derived:

- tangent modulus of elasticity

- energy loss

- delamination strength



Methods: MRI
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• Stiffness: extent to which tissue resists deformation in response to 
hemodynamic loads

Cross-sectional Area

Parameters based on area and pressure



Methods: MRI

𝑎𝑃𝑊𝑉 =
Δ𝐿

Δ𝑡

• Aortic Pulse Wave Velocity: Speed of fluid wave propagation through a 
vessel – related to stiffness
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Methods: MRI

Distal 

Ascending (DA)

Sinotubular 

Junction (STJ)

Blood flow

Voxels

𝐾𝐸𝐿 =
𝐾𝐸𝑆𝑇𝐽 −𝐾𝐸𝐷𝐴
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⋅ 100%

• Kinetic Energy Loss (KEL): Fraction of energy dissipated between 
aortic loading and unloading (efficiency of the elastic aorta)
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Methods: Ex-Vivo Biomechanics
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Biaxial Tensile Testing

Delamination Testing
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Methods: Ex-Vivo Biomechanics
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Association between Strain, Distensibility and 
Compliance and ex-vivo aortic biomechanics
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Weak correlations were found between Strain and Compliance versus Delamination strength but 

otherwise no other correlations were found.



Association between Arterial Stiffness Index and ex-vivo 
aortic biomechanics
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Greater ASI was associated with increased Energy Loss and decreased Delamination Strength



Association between Aortic Pulse Wave Velocity and ex-
vivo aortic biomechanics
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Greater aPWV was associated with decreased tangent modulus of elasticity, increased 

energy loss and decreased delamination strength



Association between Kinetic Energy Loss and ex-vivo 
aortic biomechanics
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Conclusions
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• For the first time, MRI-based aortic biomechanics have been validated 
against ex-vivo aortic biomechanics

• Most strain-based measurements of aortic biomechanics by MRI 
correlate weakly with ex vivo aortic biomechanics

• Arterial stiffness index, Aortic Pulse Wave Velocity and Kinetic Energy 
Loss are MRI-based aortic biomechanics that correlate very well with 
ex-vivo aortic biomechanics

• Future work will incorporate these 3 candidate MRI-based aortic 
biomechanical parameters into multivariable models for improving risk 
stratification of patients at risk of aortic dissection.


