Increased Risk of Major Adverse Cardiovascular Events in Elective Aortic Arch Replacement Patients undergoing Concomitant Coronary Artery Bypass Grafting

Adam Carroll (1), Michael Kirsch (1), Nicolas Chanes (1), Joseph Cleveland (1), Jessica Rove (1), Muhammad Aftab (1), T. Brett Reece (1)

(1) University of Colorado Anschutz, Denver, CO

No disclosures

Introduction

- With an aging population and improvement in morbidity and mortality after aortic arch replacements, older patients are able to undergo arch surgery
- As a result, more patients require adjunctive coronary revascularization with CABG at time of arch surgery
- Unclear how concomitant CABG affects outcomes in aortic arch surgery patients

Aim

 Investigate whether adjunctive CABG increases risk of morbidity, mortality and MACE (stroke, MI or death) in elective aortic arch patients

<u>Methods</u>

- Retrospective review of a single institution prospective database for patients who underwent elective aortic arch replacement from April 2009 to May 2023
- Stratify patients into two cohorts
 - Elective arch surgery with CABG
 - Elective arch surgery without CABG
- Between groups comparison between above cohorts, with additional investigation of primary endpoint of MACE (stroke, MI, death) with multivariable logistic regression

Results

- In total, 564 patients identified
 - 41 with adjunctive CABG, 523 without
- Patients undergoing adjunctive CABG were significantly older, more likely to be male
- Adjunctive CABG with significantly more baseline comorbidities (outside of coronary artery disease) including:
 - Hyperlipidemia (HLD)
 - Hypertension (HTN)
 - Diabetes (DM)
 - Pulmonary disease
 - Atrial fibrillation

	With CABG (N=41)	Without CABG (N=523)	p value
Preoperative Demographics			
Age	68.0±7.2	58.0±15.3	<0.001
Male	38 (92.7%)	379 (72.5%)	0.003
ВМІ	30.5±7.1	29.4±6.3	0.049
HLD	27 (68.9%)	185 (35.4%)	<0.001
HTN	39 (95.1%)	333 (63.7%)	<0.001
Smoking	8 (19.5%)	127 (24.3%)	0.571
DM2	14 (34.1%)	43 (8.22%)	<0.001
СКД	4 (9.8%)	50 (9.6%)	0.999
Prior Stroke	1 (2.4%)	37 (7.1%)	0.237
Pulmonary Disease	15 (36.6%)	115 (22.0%)	0.050
Atrial Fibrillation	8 (19.5%)	37 (7.1%)	0.009
PAD	2 (4.9%)	16 (3.1%)	0.376
Prior Sternotomy	6 (14.6%)	112 (21.4%)	0.425

Values ± standard deviation or (%)

Intraoperative Results

- CABG patients significantly more likely to undergo hemiarch replacement, have an adjunctive atrial fibrillation procedure
- Despite less total arches, significantly higher cardiopulmonary bypass and aortic cross-clamp times
- Higher administration of platelets when CABG performed

		Without CABG	
Intraoperative Variables	With CABG (N=41)	(N=523)	P value
Aortic Procedure			
Ascending Replacement	0	15 (2.9%)	0.611
Hemiarch Replacement	37 (90.2%)	383 (73.2%)	0.015
Total Arch Replacement	4 (9.8%)	125 (23.9%)	0.050
Adjunctive Procedures			
Aortic Root Replacement	11 (26.8%)	193 (36.9%)	0.238
Aortic Valve Intervention	17 (41.5%)	190 (36.3%)	0.506
Mitral Valve Intervention	2 (4.9%)	13 (2.5%)	0.299
Atrial Fibrillation Procedure	6 (14.6%)	20 (3.8%)	0.008
Intraoperative Temperature/Times			
Nadir Bladder Temp	27.1±1.3	26.9±2.2	0.561
Cardiopulmonary Bypass Time	183.3±79.2	153.3±54.5	0.001
Aortic Cross Clamp Time	125.6±53.8	98.8±46.5	0.005
Circulatory Arrest Time	12.1±8.9	13.3±10.7	0.472
Intraoperative Product (units)			
Packed Red Blood Cells	1.9±2.3	2.0±3.2	0.841
Fresh Frozen Plasma	3.7±2.5	3.2±4.1	0.442
Platelets	2.0±1.1	1.4±1.4	0.008

Postoperative Results

- CABG patients more likely to have:
 - Prolonged ventilation >48 hours
 - Need for mechanical circulatory support
 - ICU infection
 - Arrhythmia
 - In-hospital MACE

		Without CABG	
Postoperative Outcomes	With CABG (N=41)	(N=523)	P value
New Hemodialysis	2 (4.88%)	12 (2.29%)	0.270
DVT	2 (4.88%)	7 (1.33%)	0.131
CVA	3 (7.31%)	21 (4.02%)	0.406
Delirium	6 (14.53%)	49 (9.37%)	0.266
Prolonged Ventilation (>48 hr)	6 (14.53%)	29 (5.54%)	0.033
Infection	6 (14.53%)	28 (5.35%)	0.026
Mechanical Circulatory Support	4 (9.76%)	16 (3.06%)	0.050
Arrythmia	16 (39%)	106 (20.27%)	<0.001
Myocardial Infarction	1 (2.44%)	1 (0.19%)	0.136
Acute Kidney Injury (STS			
Criteria)	2 (4.88%)	12 (2.29%)	0.262
MACE	7 (17.0%)	34 (6.50%)	0.022
Mortality	3 (7.31%)	14 (2.67%)	0.114

Multivariable logistic regression

- Significant pre-operative and operative variables accurately predicted occurrence of MACE
- Multivariable analysis revealed CABG performance, number of vessels revascularized, or other operative variables not predictor of MACE
- Primary contributor: increased patient baseline comorbidities including age

<u>Conclusions</u>

- Despite undergoing less extensive aortic arch intervention, elective arch patients undergoing adjunctive CABG have increased operative times and morbidity and mortality
- Performance of CABG or number of vessels bypassed not primary driver of risk; rather the summation of increased patient risk factors and comorbidities
- Adjunctive CABG should be performed when clinically indicated, but with caution given a more comorbid population

Questions???