Initial Outcomes of Simultaneous Pulmonary Thromboendartectomy and Hemiarch Replacement

> Adam Carroll (1), Michael Cain (1), T. Brett Reece (1), Jordan Hoffman (1)(1) University of Colorado Anschutz, Denver, CO

No disclosures

Introduction

- Pulmonary thromboendartectomy (PTE) has provided a curative treatment option for chronic thromboembolic pulmonary hypertension (CTEPH)
- A subset of CTEPH patients present with concomitant aortic and cardiac pathology
- Deep hypothermic circulatory arrest (DHCA) typically used during PTE
- DHCA limits ability to address other pathology given coagulopathy risks and risk of reperfusion injury if significant volume resuscitation required

Aim

- Present a series of PTE patients who simultaneously underwent hemiarch replacement
- Discuss usage of moderate hypothermia and adjunctive retrograde cerebral perfusion (RCP) in these patients

<u>Methods</u>

- Retrospective review of a single institution aortic database for patients who underwent PTE at the time of hemiarch replacement
 - Four patients identified
- Discuss patient presentation, operative, post-operative course

Cardiopulmonary bypass set-up for PTE & aortic intervention with RCP

- 65M with dyspnea limiting activity with CTEPH, multivessel CAD, dilated ascending aorta, PFO
 - Plan for BL PTE, CABG x2, PFO closure, ascending/hemiarch
- Additional History
 - Prior liver transplant
 - CKD (Cr 1.7)
 - DM2 (not on insulin)
 - Previously very active hiker

Dilated ascending aorta

Bilateral pulmonary embolus

- 62M with severe pulmonary hypertension due to CTEPH (PASP 88mmHg, on 5L), atrial fibrillation (on multiple antiarrhythmics)
 - Plan for BL PTE, ascending/hemiarch, MAZE, left atrial appendage ligation (LAAL)

Massive right sided PE, extends further distally (also with contralateral disease)

- 63M with dyspnea limiting activity (CTEPH, PA pressures 2/3 systemic), aneurysmal ascending aorta
 - Plan for BL PTE, ascending/hemiarch
- Additional History
 - Previously very active skier, mountain biker
 - Family history of alveolar capillary dysplasia

Dilation of main PA

Multiple filling defects seen on lung perfusion

- 67M with severe pulmonary hypertension due to CTEPH (RVSP 77mmHg), atrial fibrillation, severe Al, multivessel CAD, ascending aortic aneurysm, PFO
 - Plan for BL PTE, CABG x2, AVR, PFO closure, ascending/hemiarch
- Additional History
 - Chronic osteomyelitis (shoulder), on suppressive antibiotics
 - Prior small bowel obstruction requiring surgery

Significantly dilated main PA due to CTEPH

Right sided dilation on TTE

<u>Results</u>

- All patients received RCP via SVC
 - 3 moderate hypothermia
- Three patients extubated within 24 hours
- Patients started on low dose heparin infusion within 6 hours of surgery
- One re-admission to ICU after colonic perforation due to diverticulitis
- All patients doing well at three-month follow-up

#	Adjunctive	Nadir Bladder	СРВ	Cross-	R Lung CA	L Lung CA	Additional	CA tot	PRBC	FFP	Plt	Other	Time to	ICU	Additional
	Procedures	Temperature	(min)	Clamp	(min)	(min)	Aortic CA	(min)	(units)	(units)	(units)	coagulation	extubation	LOS	Comments
	Performed	(*C)		(min)			(min)					products	(hr)	(days)	
												(units)			
1	CABG x2, PFO	22.4	259	89	19	15	0 (during R	34	1	2	1	3	17	4	None
	closure, LAAL						Lung CA)								
2	MAZE, LAAL	23.7	201	86	21	11	6	38	0	0	1	0	92	6	Mechanical
															Ventilation
															>24 nours
3	R PA plasty	28.2	172	88	19	14	6	39	0	0	0	3	22	6	Colonic
															Perforation
															(POD#12)
4	R PA plasty,	19.1	248	125	21	19	6	46	4	0	3	2	17	7	None
	CABG x2, AVR,														
	PFO closure,														
	LAAL														

Table 1. Operative variables and post-operative outcomes of patients who underwent concomitant Pulmonary Thromboendartectomy (PTE) and hemiarch replacement with retrograde cerebral perfusion. CPB (Cardiopulmonary Bypass), R (Right), L (Left), CA(circulatory arrest) PRBC (packed red blood cells), FFP (fresh frozen plasma), Plt (Platelets), POD (Post-operative day)

<u>Conclusion</u>

- Simultaneous PTE and aortic arch surgery can be safely performed
 - Performing aortic repair has additional benefit of improving operative view, especially of the right PA
- RCP with moderate hypothermia provides adequate cerebral protection
 - Additional benefit of blood-less field
- Post-operatively, need to balance risk of resuscitation and reperfusion injury, as well as risk of baseline coagulopathy and bleeding

Questions???