Long-term outcome in patients undergoing aortic root replacement: The Bentall procedure in Latin-American

Javier Dario Maldonado Escalante, MD Carlos Jose Perez Rivera, MD, MSc German Molina, MD Andres Motta, MD Alejandra Prada, MD

Conflicts of interest

No disclosures

Objective

- The surgical reconstruction of the aortic root with a conduit valve/composite graft (CG) was firstly described by Bentall and DeBono
- Aortic root replacement (ARR) surgery using a valved conduit, whether mechanical or biological, is still the most commonly used technique for the correction of diseases affecting this aortic segment
- There are limited long-term outcomes published in Latin America, especially regarding survival.
- The aim of this study: to evaluate the early and long-term outcome in patients undergoing aortic root replacement according to the Bentall technique

- 1. Bentall H, De Bono A. A technique for complete replacement of the ascending aorta. Thorax 1968;23:338–339
- Svensson LG, Crawford ES, Hess KR, Coselli JS, Safi HJ. Composite valve graft replacement of the proximal aorta: comparison of techniques in 348 patients. Ann Thorac Surg. 1992;54(3):427–37. discussion 38–9.

Methods

- A retrospective cohort based on a prospective collected data base from January of 2008 to January 2023 at cardiac surgical center in Bogotá, Colombia
- Perioperative mortality, reoperation rate, aortic valve function, long-term survival were evaluated
- The results were examined by univariate, multivariate and a Kaplan Meier analysis

	n= 110	j	Тур	e of
ıge median (RIQ) - años	64(60 - 68)		•	El
iender (%)				F .
Male	88 (80)		•	EI
Female	22 (20)		Can Met	nula thoc
uroscore II median (IQR)	6 (4,0 – 10,7)		•	C
rterial Hypertension (%)	73 (66,3)		•	Pe
lypothyroidism (%)	23 (20,9)			
/ledian Body Mass Index IQR)– kg/m2	25,4 (23,5 – 27,6)			
hronic Kidney Disease (%)	4 (3,6)			
lortic prosthesis size (%) – nm				
21	10 (9,1)			
23	12 (10,9)			
25	29 (26,4)			
27	34 (30,1)			
29	25 (22,7)			
ype of Prosthesis (%)				
Biological	74 (67,3)			
Mechanical	36 (32,7)			

SOCIO-DEMOGRAPHIC CHARACTERISTICS

2. OPERATIVE CHARACTERISTICS

ype of surgery (%)
Elective	91 (82,7)
Emergency	19 (17,3)
Cannulation Aethod (%)	
Central	108 (98,2)
Peripheral	2 (1,8)

3. POSTOPERATIVE COMPLICATIONS				
Superficial Infection (%)	7 (6,4)			
Neurologic (Stroke > 24 hours) (%)	2 (1,8)			
Reoperation due to bleeding (%)	10 (9,1)			
AV Block (%)	33 (27,2)			
Atrial Fibrillation (%)	26 (23,6)			
UTI (%)	3 (2,7)			
Acute kidney injury (%)	6 (5,5)			
Pneumonia (%)	4 (3,6)			
Cross clamp time median (IQR) - minutes	94 (86 – 112)			
Cardiopulmonary bypass time median (IQR) - minutes	111,5 (100,0 – 130,7)			

	4. FOLLOW-UP	1
Mortality 30 days (%)	10 (9,1)	
NYHA Functional Class at 10 years (%)		
• 1	77 (70)	
• 2	29 (26,4)	
• 3	3 (2,7)	
• 4	1 (0,9)	
Survival >12 years (%)	95,5	

Bivariate analysis based on valve type

Variables	Bioprosthesis	Mechanical	P Value
n	74	36	
Neurologic (Stroke > 24 hours) (%)	1 (1 A)	1 (2 7)	0.54
	1 (1.4)	1 (2.7)	0.54
Reoperation due to bleeding (%)	6 (8.1)	4 (11.1)	0.72
AV Block (%)			
	2 (2.7)	1 (2.7)	0,20
Atrial Fibrillation (%)			
	21 (28.4)	5 (13.9)	0,20
UTI (%)			
	3 (4.1)	0	0,20
Acute kidney injury (%)	4 (5.4)	2 (5.6)	1.0
Survival >12 years (%)	20 (90.9)	9 (100)	1.0

P-values calculated using Fisher and Wilcox tests (a) indicate non-significant differences between groups for most variables analyzed in relation to the type of valve used in the Bentall procedure

Conclusions

- The Bentall procedure is an appropriate and safe surgical approach in our population and institution.
- It is also a very durable procedure with an excellent valve performance, low-rate of long-term reoperation.

