Mid-term outcomes of Y incision annular root enlargement compared to traditional root enlargement techniques

Fatima Qamar, MD, MPH; Sahar Samimi, MD; Marcel Gugala, BS; Muskan Khan, BS; Ahmed Ahmed, MD, MPH; Taha Hatab, MD; Rody Bou Chaaya, MD; Neal Kleiman, MD; Sachin Goel, MD; Syed Zaid, MD; Ross Reul, MD; Mahesh Ramchandani, MD; Michael Reardon, MD; Marvin Atkins, MD.

April 25–26, 2024 New York, NY, USA

• The authors have no relevant disclosures.

Background

Patient Prosthetic mismatch (PPM) is defined as
"a smaller than expected effective orifice area
(EOA) in relation to the patient's body surface area (BSA) resulting in higher transvalvular gradients".¹

• Higher incidence of PPM in Surgical Aortic Valve Replacement (SAVR) compared to Transcatheter Aortic Valve Replacement (TAVR). ^{2,3}

• PPM is associated with

٠

- Significant reduction in cardiac index ⁴
- Increased risk of mortality and heart failure rehospitalization after SAVR ⁵
- 2.3x increase in risk of structural valve degradation ⁶
- Prevention of PPM
 - Valve substitution (sutureless, stentless or supra-annular bioprosthesis etc.)
 - Aortic Root enlargement
 - TAVR

Figure 1

A) Showcases the posterior view of aortic root enlargement through two techniques: Nicks and

Manouguian. B) Displays a novel aortic root enlargement technique: Y-incision.

Objectives

- PPM remains a significant • problem in SAVR
- The Y-incision root enlargement technique was proposed to enlarge the annulus by 3-4 valve sizes
- We compare our early results • using Y- annuloplasty with traditional root enlargement (Nicks or Manouguian).

Methods

- Building institutional National database
- Clinical information • extracted from chart reviews
- Parameters collected: •
 - Surgery type
 - Demographic characteristics

STS

Trusted.

Transformed. Real-Time

Database

2017-2023

- **Procedural characteristics**
- 30-day & one-year outcomes

Results Demographics & comorbidities

	Total	Traditional	Yang	p-value
	N=111	N=60	N=51	
Age	64.68 (11.82)	64.90 (9.71)	64.43 (14.00)	0.84
Sex				0.005
Female	76 (68.47%)	48 (80.00%)	28 (54.90%)	
Male	35 (31.53%)	12 (20.00%)	23 (45.10%)	
Race				0.85
White	93 (83.78%)	49 (81.67%)	44 (86.27%)	
Black/African American	11 (9.91%)	7 (11.67%)	4 (7.84%)	
Asian	4 (3.60%)	2 (3.33%)	2 (3.92%)	
Other	3 (2.70%)	2 (3.34%)	1 (1.96%)	
BMI	30.50 (7.50)	30.75 (8.62)	30.20 (5.98)	0.70
Presence of diabetes	47 (42.34%)	23 (38.33%)	24 (47.06%)	0.35
Presence of prior MI	11 (9.91%)	3 (5.00%)	8 (15.69%)	0.060
Presence of renal failure	4 (%)	2 (%)	2 (%)	0.87
Presence of endocarditis	10 (9.01%)	1 (1.67%)	9 (17.65%)	0.003
Previous Cardiac Interventions	41 (40.20%)	15 (28.30%)	26 (53.06%)	0.011
Previous SAVR/TAVR				0.55
Aortic valve replacement; surgical	29 (74.36%)	13 (76.47%)	16 (72.73%)	
Aortic valve replacement; transcatheter	6 (15.38%)	2 (11.76%)	4 (18.19%)	
Redo Sternotomy	30 (27.03%)	14 (23.33%)	17 (33.33%)	0.18
Presence of Heart Failure	50 (56.82%)	24 (52.17%)	26 (61.90%)	0.36
NYHA				0.49
Class I	18 (18.56%)	11 (20.75%)	7 (15.91%)	
Class II	34 (35.05%)	19 (35.85%)	15 (34.09%)	
Class III	40 (41.24%)	19 (35.85%)	21 (47.73%)	
Presence of Cardiac Arrhythmia	20 (22.99%)	7 (15.56%)	13 (30.95%)	0.088

Results

Operative characteristics

	Total N-111	Traditional	Yang N-51	p-value
Incidence of Surgery		11-00	11-51	0.40
First cardiovascular surgery	77 (70.00%)	45 (75.00%)	32 (64.00%)	
First re-on cardiovascular surgery	26 (26 36%)	13 (21 67%)	16 (32,00%)	
> 1 re-op cardiovascular surgery	4 (3.60%)	2 (3.33%)	2 (4.00%)	
Status		(=)		0.47
Elective	82 (73.87%)	46 (76.67%)	36 (70.59%)	
Urgent	29 (26.13%)	14 (23.33%)	15 (29.41%)	
Procedure Category				0.028
AVR+CAB	16 (15.53%)	9 (15.79%)	7 (15.22%)	
AVR+MVR	11 (10.68%)	1 (1.75%)	10 (21.74%)	
Isolated AVR	71 (68.93%)	43 (75.44%)	28 (60.87%)	
Cardiopulmonary Bypass Time (min)	153.51 (59.28)	129.51 (48.60)	182.41 (58.48)	<0.001
Aortic Cross Clamp Time (min)	118.37 (45.79)	104.71 (40.88)	135.17 (46.32)	<0.001
SAVR device type				1.00
Bioprosthetic	83 (77.57%)	45 (77.59%)	38 (77.55%)	
Mechanical	24 (22.43%)	13 (22.41%)	11 (22.45%)	
Bioprosthetic Valve Type				0.47
Stented	81 (96.43%)	44 (97.78%)	37 (94.87%)	
Sutureless/rapid deployment	3 (3.57%)	1 (2.22%)	2 (5.13%)	
Intraoperative Blood Products-				
Total Units	2.72 (2.88)	2.69 (3.11)	2.75 (2.70)	0.94

Results

Post- Operative Outcomes

	Total	Traditional	Yang	p-value
	N=111	N=60	N=51	
Implanted Aortic Valve Size	22.63 (2.04)	21.52 (1.63)	23.94 (1.67)	<0.001
Aortic Gradient-Mean	11.64 (5.68)	12.05 (5.18)	11.22 (6.19)	0.23
Effective Orifice Area	1.71 (0.45)	1.60 (0.40)	1.81 (0.49)	0.05
Total Postoperative Ventilation Hours	53.37 (172.27)	36.83 (121.30)	65.08 (201.39)	0.50
30-day Readmission to ICU	5 (5.75%)	3 (6.67%)	2 (4.76%)	0.70
30-day In Hospital Post-Op Events	61 (59.80%)	35 (61.40%)	26 (57.78%)	0.71
30-day Post-Op Bleeding/Tamponade	5 (8.33%)	2 (5.88%)	3 (11.54%)	0.43
30-day Post-Op Prolonged Ventilation	18 (29.51%)	8 (22.86%)	10 (38.46%)	0.19
30-day Post-Op Pleural Effusion	18 (29.51%)	9 (25.71%)	9 (34.62%)	0.45
30-day Post-Op AKI/ Renal Failure	12 (20.00%)	6 (17.65%)	6 (23.08%)	0.60
Mortality at 30 days post-op	4 (3.6%)	1 (1.7%)	3 (6.00%)	0.50
Cardiac specific mortality at one-year post-op	6 (5.4%)	2 (3.33%)	4 (7.8%)	0.09
One-year cardiac readmission	23 (22.55%)	11 (20.75%)	12 (24.49%)	0.65
Total Procedure Time (Hours)	5.94 (2.00)	5.39 (1.65)	6.33 (2.15)	0.051
Surgery to Discharge LOS (Days)	12.43 (9.64)	10.65 (7.27)	14.56 (11.59)	0.033
Total ICU Hours	150.84 (182.15)	127.26 (172.80)	175.54 (190.39)	0.22
Major Morbidity or Mortality	20 (22.99%)	10 (22.22%)	10 (23.81%)	0.86

Results

Demonstration of increase in native aortic annulus diameter versus prosthesis size after Y-incision annular enlargement and Nicks/Manouguian procedures.

• Multivariable analysis

	P-value	HR (95%CI)	Forest Plot for Cox Model
Male	0.27	0.40 (0.07-2.11)	
Endocarditis	0.67	1.64 (0.15-17.07)	F
Age	0.99	1.00 (0.94-1.07)	
Prior MI	0.05	5.67 (1.01-31.82)	
Yang procedure	0.17	3.33 (0.58-19.21)	
		0	01 0.36 1.00 2.71 20.08 35.00 Hazard Ratio (log scale)

Multivariable analysis, adjusting for age, gender, endocarditis, and prior MI, showed no significant difference in mortality hazards at 30 days (p:0.14) and one year (p:0.26)between the two procedures.

Demonstration of forest plot for hazard ratios in the Cox model.

Conclusions

- Our experience with 51 patients
 undergoing Y root enlargement shows
 similar perioperative outcomes after
 adjusting for comorbidities compared to
 traditional root enlargement techniques.
- The Y enlargement cohort was associated with a longer operative time and a more significant increase in aortic valve size.
- Further investigations are warranted to validate these early results and assess long-term effects.
- Y-incision more frequently in endocarditis and required multi-valve operations.

References

- 1. Pibarot P, Dumesnil JG. Prosthesis-patient mismatch: definition, clinical impact, and prevention. Heart. 2006 Aug;92(8):1022-9.
- 2. Ghanta RK, Kron IL. Patient-prosthesis mismatch: surgical aortic valve replacement versus transcatheter aortic valve replacement in high-risk patients with aortic stenosis. J Thorac Dis. 2016 Oct;8(10):E1441-E1443.
- 3. Abbas AE et al. Impact of Flow on Prosthesis-Patient Mismatch Following Transcatheter and Surgical Aortic Valve Replacement. Circ Cardiovasc Imaging. 2021 Aug;14(8):e012364.
- 4. Pibarot P et al. Impact of prosthesis-patient mismatch on hemodynamic and symptomatic status, morbidity and mortality after aortic valve replacement with a bioprosthetic heart valve. J Heart Valve Dis. 1998 Mar;7(2):211-8.
- 5. Sá MPBO et al.mSurgical aortic valve replacement and patientprosthesis mismatch: a meta-analysis of 108 182 patients. Eur J Cardiothorac Surg. 2019 Jul 1;56(1):44-54.
- 6. Flameng W et al. Antimineralization treatment and patient-prosthesis mismatch are major determinants of the onset and incidence of structural valve degeneration in bioprosthetic heart valves. J Thorac Cardiovasc Surg. 2014 Apr;147(4):1219-24.
- 7. Grubb KJ. Aortic root enlargement during aortic valve replacement: Nicks and manouguian techniques. Operative Techniques in Thoracic and Cardiovascular Surgery. 2015;20(3):206-218.
- 8. Yang B, Ghita C, Palmer S. Y-incision aortic root enlargement with modified aortotomy upsizing the annulus by 5 valve sizes. Ann Thorac Surg. 2022;114(6):e479-e481