Midterm Outcomes following Endovascular Repair of Complex Aortic Aneurysms in Patients with Connective Tissue Disorders

Presenter: Lucas Ribé MD,

Yuki Ikeno, Safa Savadi, Rana O Afifi, Akiko Tanaka, Lucas Ruiter, Gustavo Oderich.

April 25th 2024. Aortic Symposium. AATS- The American Association for Thoracic Surgery 104th Annual Meeting. The University of Texas Health Science Center at Houston.

Department of Cardiothoracic & Vascular Surgery

Midterm Outcomes following Endovascular Repair of Complex Aortic Aneurysms in Patients with Connective Tissue Disorders

INTRODUCTION

- Connective tissue disorders (**CTDs**) primarily affecting the aorta and leading to severe cardiovascular manifestations include Marfan syndrome (MFS), Loeys-Dietz syndrome (LDS), vascular Ehlers-Danlos syndrome (vEDS), and Familial Thoracic Aortic Aneurysm and Dissection syndrome (FTAAD).
- There is very scarce literature documenting the use of **endovascular fenestrated or branched stent-grafts** for the management of CTDs, including both thoracoabdominal aneurysmal (TAAA) disease and dissection.

Olsson KW et al. JAMA Surg. 2023 Aug 1;158(8):832-839.

OBJECTIVE

The purpose of this study is to describe mid-term outcomes of patients with **connective tissue disorders** (CTDs) and thoraco-abdominal aortic aneurysms (TAAA) or dissections after complex endovascular procedures

METHODS

- From 2018 to 2013 we conducted a retrospective review of patients with connective tissue disorders (CTDs) who underwent endovascular repair with physician-sponsored investigational device exemption (PS-IDE) for treatment of TAAAs and complex aortic dissections, including Fenestrated-Branched endovascular aortic repair (F-BEVAR).
- Study participants were prospectively recruited from the Mayo Clinic Institution and Memorial Hermann Hospital at Texas Medical Center.
- We identified **330 patients** who underwent aortic reconstruction for aneurysms or dissection of the thoracoabdominal aorta.

METHODS

- Follow-up was conducted through outpatient physical examinations, stent-graft duplex ultrasounds, laboratory studies, and computed tomography angiograms (CTA) before discharge, as well as at 6- and 12-months post-intervention.
- Starting in 2020, cone-beam computed tomography (**CBCT**) was implemented.

RESULTS

- Twelve patients with CTDs were treated with a complex endovascular investigational device (ID) stent-graft for aortic dissection or aneurysm affecting the thoracoabdominal aorta.
- Median age was 72 years (interquartile range [IQR] 63-81).
- Eleven patients (92%) had previously undergone open aortic surgery.
- Eight patients (67%) had undergone prior endovascular aortic procedure.

RESULTS

	No. (%) Connective Tissue Disorders (CTDs) (n= 12)		
and a state			
Age, (KQR), years	72 (63-81)		
Sex			
Male	7 (58.3)		
Female	5 (41.7)		
Hyperbension	11 (92)		
Coronary artery disease	2{17}		
Peripheral artery disease	2 (17)		
Previous cerebrovascular accident	2 (17)		
Respiratory disease	2 (17)		
Congestive heart failure	1 (8.3)		
Kidney impairment	1(8.3)		
Previous open aortic surgery	11 (92)		
Previous endovascular aortic repair	8 (66.6)		

AQR: Interquartile range

RESULTS

Table 1. Patient Characteristics

	No. (%) Connective Tissue Disorders (CTDs) (n= 12)	
Characteristic		
Age, (KOR), years	72 (63-81)	
Sern		
Male	7 (58.3)	
Female	5 (41.7)	
Hypertension	11 (92)	
Coronary artery disease	2 {17}	
Peripheral artery disease	2 (17)	
Previous cerebrovascular accident	2 (17)	
Respiratory disease	2 (17)	
Congestive heart failure	1 (8.3)	
Kidney impairment	1 (8.3)	
Previous open aortic surgery	11 (92)	
Previous endovascular aortic repair	8 (66.6)	

AQR: Interquartile range

Table 2. Endovascular procedure details and device type

Characteristic	Number (2)			
	Connective	Table 2. Endovascular procedur Tissue Disorders (CTDs)	procedure details and device type	
		Characteristic	Number (%)	
Cerebrospinal fluid drain	3 (25		Connective Tissue Disorders (CTDs (n= 12)	
Neuromonitoring	12 (10		(11)	
Device design		Procedure metrics		
F-BEVAR	5 (41.)			
Off-the-shelf T-Branch	5 (41.)			
PMEG	2 (17	Contrast volume, mL	158 (110-306)	
IBD	5 (41.	DAP, Gy-cm ²	703 (82- 676)	
Femoral conduit	4 (33.	EBL, mL	340 (10- 1150)	
Unilateral	3 [75	Fluoroscopy time, minutes	79 (39-217)	
Bilateral	1 (25			
lio- femoral conduit	1 (8.3	Target vessels per patient	4 (3-5)	
Unilateral	1 (100	Technical success	12 (100)	
Bilateral	O (O)	Total endovascular time, minutes	163 (128-323)	
Percutaneous femoral	12 (10	rotarendovascolar time, minotes	103 (128- 325)	
Unilateral	9 (75	Total operative time, minutes	220 (193- 327)	
Bilateral	3 (25	Total radiation dose (mGy)	1649 (385- 4756)	
Sheath size, Fr	20 {18-	Contraction and a fundal	The family as and	
Upper extremity approach	6 (50			
Right	e (100	9		
Left	0 (0)		i a di La	

DISCUSSION

- Several series have concluded that endovascular treatment for CTDs is feasible, with high primary technical success and low 30-day mortality.
- However, significant gaps remain in data about later clinical and surgical complications and survival.

DISCUSSION

- We found that the rate of acute *kidney injury was very low (0%* in our study group), with only one patient (8.3%) presenting with spinal cord ischemia that resolved during the admission after CSF drain placement.
- **Primary technical success** has been reported ranging from 96-100%.
- Major complications in the first 30 days, including stroke, myocardial infraction, spinal cord injury, are low (0-15%), with a low perioperative mortality rate.
- **Complications** may arise during the follow up: endoleaks, branch stenosis or occlusion, device migration, re-dissection, and retrograde dissection.

Oderich GS et al. S, J Vasc Surg. 2005 Jul;42(1):98-106.

CONCLUSIONS

Patients with connective tissue disorders (CTDs) after endovascular interventions of complex TAAAs and dissections have an excellent early outcome.

However, in 40% of cases, minor and major complications could manifest in the early postoperative phase.

