Operative Urgency in Total Arch Replacement: Urgent Patients Benefit from Pre-Operative Optimization

Adam Carroll (1), Michal Schafer (1), Nicolas Chanes (1), Michael Kirsch (1), Ananya Shah (1), Zihan Feng (1), Muhammad Aftab (1), T. Brett Reece (1)

(1) University of Colorado Anschutz, Denver, CO

No disclosures

Introduction

- Despite advances in technique, total arch replacement still carries high risk of morbidity and mortality
- Emergent total arch patients fare worse compared to elective patients, but unclear how urgent patients fare
 - Can undergo some degree of pre-operative optimization, but still have acute pathology
- We hypothesized urgent patients would have similar outcomes to emergent patients given acuity of presentation

Investigate outcomes in total arch replacement between elective, urgent and emergent patients

<u>Methods</u>

- A retrospective review of a single institution aortic database from 2011-2023 for patients who underwent total arch replacement
- Stratify patients into three cohorts: Elective, Urgent, Emergent
 - Perform between groups comparisons of pre-operative and operative variables, post-operative outcomes
 - Perform adjusted cox proportional hazard analysis for 30-day mortality by procedural urgency

Results: Preoperative

- In total, 243 patients identified
- Higher incidence of coronary artery disease in nonemergent cohorts, otherwise no differences seen in pre-operative variables

	Elective	Urgent	Emergent	p value
Ν	120	56	67	
Age	59.7 (49.1-68.5)	64.4 (59.1-70.4)	58.2 (50.3-63.4)	0.323
Male	78 (65.0%)	35 (62.5%)	45 (67.2%)	0.865
Body Mass Index (BMI)	27.4 (24.2-31.0)	27.4 (24.7-30.1)	28.1 (23.5-33.2)	0.784
Hyperlipidemia	39 (32.5%)	27 (40.3%)	18 (26.9%)	0.722
Hypertension	94 (78.3%)	43 (76.8%)	53 (79.1%)	0.958
Current Smoker	27 (22.5%)	21 (37.5%)	16 (23.9%)	0.102
Diabetes Mellitus	8 (6.7%)	6 (10.7%)	3 (4.5%)	0.388
Chronic Kidney Disease	15 (12.5%)	7 (12.5%)	7 (10.4%)	0.933
Prior Stroke	15 (12.5%)	8 (14.3%)	6 (9.0%)	0.661
Coronary Artery Disease	22 (18.3%)	7 (12.5%)	2 (3.0%)	0.011
Peripheral Vascular Disease	10 (8.3%)	3 (5.4%)	4 (6.0%)	0.847
Pulmonary Disease	29 (24.2%)	17 (30.4%)	16 (23.9%)	0.667

Results: Intraoperative

- Emergent patients:
 - Increased cardiopulmonary bypass, cross-clamp times
 - Lower nadir bladder temperature, but in range of moderate hypothermia
 - Increased RBC and coagulation product (FFP and platelet)
- No differences seen in circulatory arrest time
- <u>No differences seen between</u> <u>urgent patients relative to</u> <u>elective</u>

Results: Postoperative

- Emergent patients:
 - Increased length of stay, ICU length of stay
 - More stroke, hemodialysis, prolonged ventilation, mortality
- Trend towards higher stroke in urgent patients, but non-significant (p=0.09)
- No significant differences seen between urgent patients relative to elective
 - Longer length of stay reflective of preoperative optimization

				р
	Elective	Urgent	Emergent	value
Ν	120	56	67	
Length of Stay	10 (7-15)	14 (11-18)	13 (9-23)	0.003
ICU Length of Stay	4 (3-6)	5 (4-8)	7 (4-13)	0.001
Open Chest	14 (11.7%)	9 (16.1%)	15 (22.4%)	0.148
Stroke	11 (9.2%)	11 (19.6%)	27 (40.3%)	<0.001
New RRT	8 (6.7%)	2 (3.5%)	18 (26.9%)	<0.001
Prolonged Ventilation (>48				
hr)	17 (14.2%)	8 (14.3%)	20 (29.9%)	0.025
Infection	13 (10.8%)	9 (16.1%)	15 (22.4%)	0.106
Mechanical Circulatory				
Support	5 (4.2%)	4 (7.1%)	8 (11.9%)	0.134
Mortality	11 (9.2%)	6 (10.7%)	20 (28.4%)	0.001

<u>Results</u>

 Adjusted Cox proportional hazard model demonstrated reduced 30-day survival for emergent group (p=0.010)

<u>Conclusions</u>

- Emergent patients have longer operative times and require more product, at high risk for adverse postoperative outcomes
- Urgent patients fare similarly to elective patients
- Urgent patients appear to benefit from pre-operative optimization when clinically feasible

Questions???