Predicting Renal Replacement Therapy After Total Arch Surgery Using Machine Learning

Adam Carroll (1), Nicolas Chanes (1), Michael Kirsch (1), Bo Chang Wu (1), Muhammad Aftab (1), T. Brett Reece (1)

(1) University of Colorado Anschutz, Denver, CO

No disclosures

Introduction

- Patients undergoing total arch surgery are at high risk of acute kidney injury (AKI)
 - AKI significantly increases morbidity and mortality

 Identifying patients at risk for AKI in total arch surgery may help to improve outcomes

- Develop a machine learning model to predict need for renal replacement therapy after total arch surgery
- Determine if specific features are associated with increased risk of AKI in total arch surgery

<u>Methods</u>

- Retrospective review of aortic database for all patients who underwent total arch surgery from 2009 to 2022
- Patients divided into training (70%) and testing (30%) sets with eXtreme gradient boosting (XGBoost) models
- Included 64 input parameters
 - 24 demographic characteristics
 - 8 pre-operative, 32 intraoperative variables
- Assess model performance and accuracy with area under receiver operating curve (AUC-ROC) and precision with area under precision recall curve (AUC-PR, mean average precision)
- Perform feature analysis to determine impact of input parameters

Results

- 235 patients included in analysis
- Majority of patients Caucasian, presented urgently or emergently with dissection pathology
- Most patients required distal extension with elephant trunk
- AKI requiring renal replacement therapy (RRT) occurred in 25 patients (10.6%)

Age	59 ± 14	Procedure Type	
Male	153 (65.1%)	Total Arch	235 (100%)
BMI	28 ± 6	Root + Total Arch	65 (27.7%)
Baseline Systolic BP	135 ± 25	Open Arch Elephant Trunk	178 (75.7%)
	$n \pm n$	Operative Urgeney	
Caucasian	168 (71 5%)	Operative Orgency	
African American	29 (12 3%)	Elective	111 (47.2%)
Asian	8 (3.4%)	Urgent/Emergent	124 (52.8%)
Hispanic	22 (9.4%)	Adjunctive Procedure	
Other	8 (3.4%)	No Adjunctive Structural	93 (39.6%)
Comorbidities		Procedure	,
No Comorbidities	7 (3.0%)	Aortic Valve Repair	9 (3.8%)
Dyslipidemia	75 (31.9%)	Aartia Valva Poplacement	25 (14 0%)
HTN	181 (77.0%)	Aorus valve Replacement	33 (14.9%)
Smoking	57 (24.3%)	Mitral Valve Repair	2 (0.9%)
Diabetes	17 (7.2%)	Tricuspid Valve Repair	2 (0.9%)
Renal Disease	30 (12.8%)	PFO Closure	3 (1.3%)
PVD	15 (6.4%)	VSD Closure	2 (0.9%)
Obesity	73 (31.1%)		2 (0.370)
CVA	31 (13.2%)	Afib Procedure	3 (1.3%)
Liver Disease	1 (0.4%)	CABG	11 (4.7%)
Pulmonary Disease	60 (25.5%)	Operative Variables	
Afib	24 (10.2%)	Nadir Bladder Temperature	25 ± 3
Autoimmune Disease	8 (3.4%)	CPB Time	200 ± 73
Surgical History		Aortic Cross-Clamp Time	103 ± 58
No Hx of CT Surgery	416 (69.1%)	Circulatory Arrest Time	27 ± 16
Hx of Sternotomy	67 (11.1%)		27 ± 10
Hx of Aortic Surgery	49 (8.1%)	OR CPB Nadir Hemoglobin	8 ± 1
Number of Sternotomies	64 (10.6%)	Circulatory Arrest Protection	
Aortic Presentation		Straight HCA	6 (2.6%)
Aneurysm	133 (56.6%)	RCP	14 (6.0%)
Dissection	154 (65.5%)	SACP via Avillan	34 (14 5%)
Dissection – Malperfusion	42 (17.9%)		J4 (14.5%)
Penetrating Ulcer	5 (2.1%)	SACP via Innominate	47 (20.0%)
Inrombus	5 (2.1%)	Direct Innominate	1 (0.4%)
Endoleak	1 (U.4%) 3 (1 3%)	Innominate, Left Carotid	41 (17.4%)
Baseline Labs	3 (1.376)	Intraoperative Blood Products	
Creatinine	1 ± 1	Intraoperative # RBC Units	4 ± 5
HbA1c	6 ± 1		6 + 5
Hemoglobin	13 ± 2		0 ± 0
Platelets	$\textbf{220} \pm \textbf{80}$		2 ± 1
INR	1 ± 0	Intraoperative # Cryo Units	0 ± 1

<u>Results</u>

- XG boost model demonstrated excellent accuracy (AUC-ROC 0.88 for testing set)
 - Predictor with 92% accuracy on testing data set
 - Brier Score 0.10

Results: Feature Impact & Value

- SHAP-Violin plot provides insight into model decision making
- Low pre-operative creatinine levels associated with increased AKI risk
 - May be an indicator of baseline frailty
- Increased intraoperative transfusion, longer cardiopulmonary bypass time associated with increased risk of RRT

Interpreting SHAP Violin plot:

- Descending order of impact on model (highest=most impact)
- Color indicates variable value (for categorical variables, yes=high)

<u>Conclusions</u>

- Machine learning model demonstrated excellent performance in predicting patients who would have severe AKI requiring RRT after total arch surgery
- Lower pre-operative creatinine, likely indicating frailty, length of cardiopulmonary bypass, and increased intraoperative RBC administration associated with increased AKI risk
- Predicting which patients are at risk for AKI may help to guide clinical decision making

Questions???