Predictors of Ascending Aortic Biomechanics Using Epiaortic Ultrasound: The Role of Aortopathy

Abigail Snyder¹, Benjamin Kramer¹, Matthew Thompson¹, Ashley Lowry², Eugene Blackstone^{1,2}, Jennifer Hargrave³, Eric Roselli^{1,4}

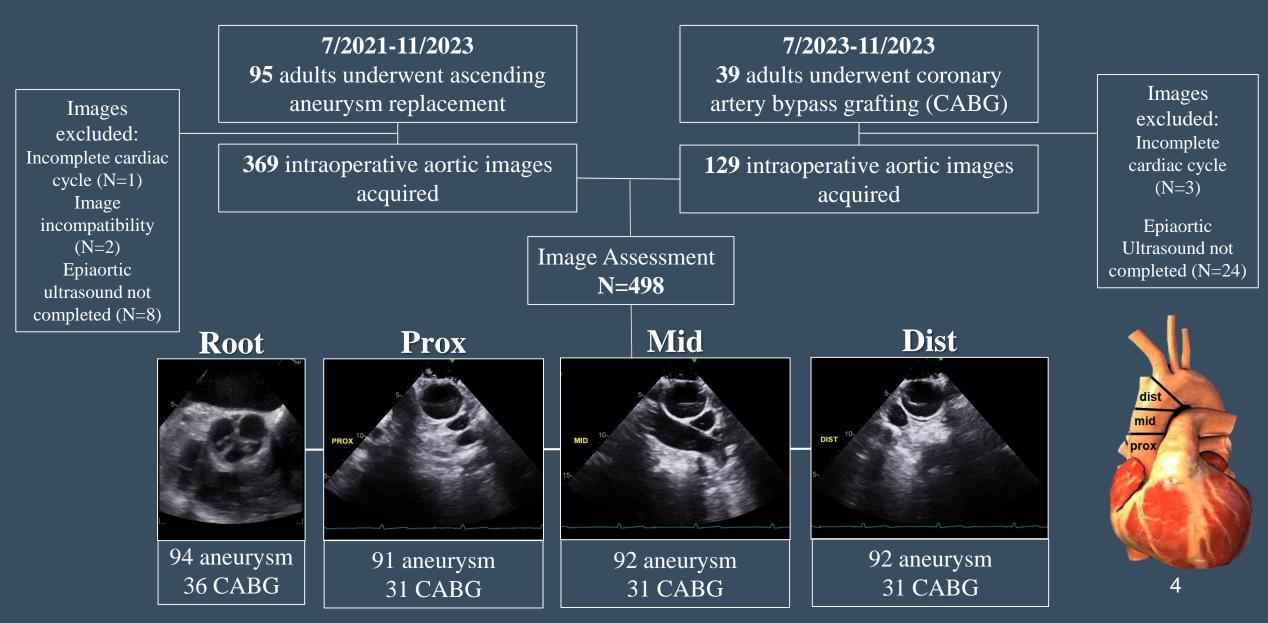
¹Department of Thoracic and Cardiovascular Surgery, Heart, Vascular & Thoracic Institute, Cleveland Clinic ²Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic ³Department of Cardiothoracic Anesthesiology, Heart, Vascular & Thoracic Institute, Cleveland Clinic ⁴Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic

Background

In-vivo mechanical predictors of aortic tissue behavior are needed to better inform optimal timing for prophylactic ascending aortic aneurysm repair

Transesophageal echocardiography and epiaortic ultrasound allow for detailed in-vivo assessment of the entire ascending aorta

Research Aims


Aim 1: Determine the clinical predictors of in-vivo biomechanics in aneurysmal and non-aneurysmal ascending aortas.

- > Mechanical outcomes of interest:
 - Distensibility
 - Global Circumferential Strain (GCS)
 - Stiffness Index (SI)

Aim 2: Identify the impact of aneurysmal pathology on aortic biomechanics.

We hypothesize that the presence of an ascending aortic aneurysm will be a significant predictor of in-vivo mechanical outcomes.

Study Design

In-Vivo Mechanical Outcomes

 Global Circumferential Strain (GCS)
Change in the circumference of the aorta during one cardiac cycle

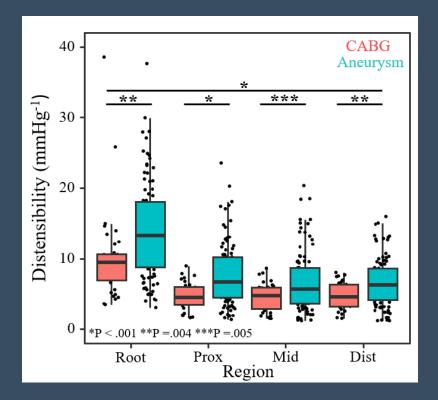
Stiffness Index (SI)

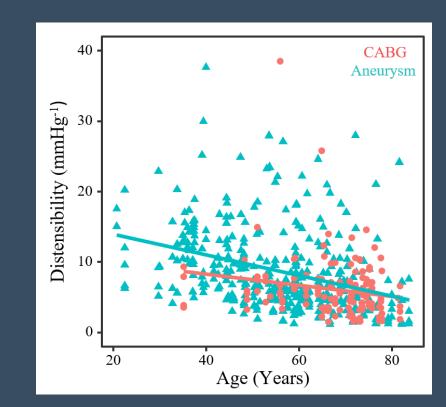
Resistance of the aorta to deformation indexed to arterial blood pressure

Ln(SBP/DBP)Strain

Distensibility

The ability of the aorta to expand in response to changes in blood pressure


$$\frac{2 * (A_{sys} - A_{dia})}{A_{dia} * (SBP - DBP)}$$

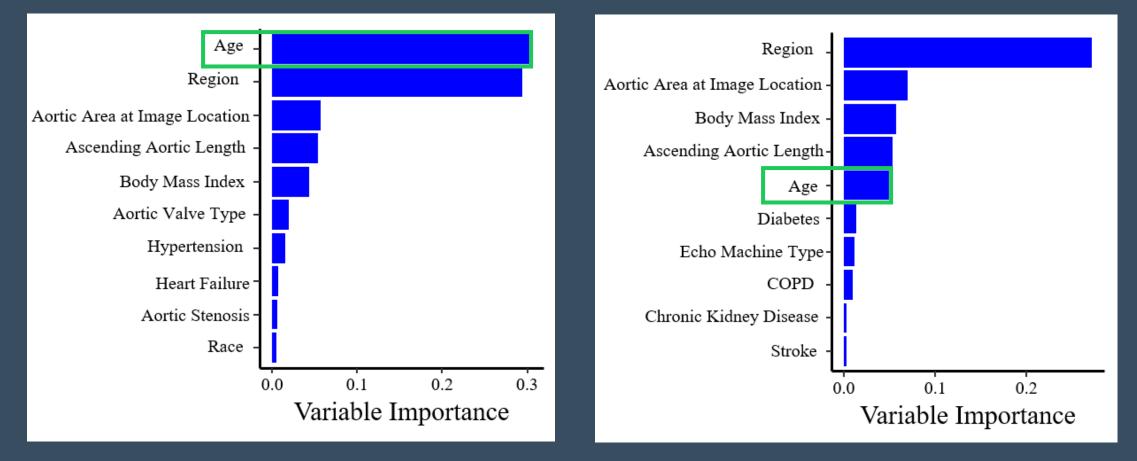

Study Population Characteristics

Variable –	Aneurysm ($N = 95$)			- P-Value	
Vallable	Ν	Count (%), Mean±SD	Ν	Count (%), Mean±SD	- r-value
Age (years)	95	55.20 ± 14.74	39	66.73 ± 10.40	< 0.001
Sex (male)	95	73 (76.8%)	39	30 (76.9%)	1.000
Race	93		39		0.500
Black		5 (5.3%)		1 (2.6%)	
White		83 (87.4%)		35 (89.7%)	
Other	95	5 (5.3%)	39	3 (7.7%)	
HTN	95	57 (60%)	39	39 (100%)	< 0.001
Aortic Valve Phenotype, Tricuspid		42 (44.2%)	39	39 (100%)	< 0.001
Aortic Insufficiency	95		39		
None		28 (29.5)		39 (100%)	< 0.001
Mild		24 (25.3)		0 (0%)	
Moderate		19 (20.0)		0 (0%)	
Severe		24 (25.3)		0 (0%)	
Maximum Aortic Diameter (cm)	93	5.20 ± 0.60	36	3.65 ± 0.23	< 0.001
Centerline Ascending Aortic Length (mm)	91	110.76 ± 16.15	36	88.76 ± 11.17	< 0.001

In-Vivo Mechanical Outcomes

Variable	Aneurysm (N $=$ 369)			— P-Value	
Variable	Ν	Mean \pm SD	Ν	Mean \pm SD	- I-value
Global Circumferential Strain (%)	369	6.4 ± 4.5	129	4.4 ± 2.3	<.001
Stiffness Index	369	13.1 ± 9.3	129	18.1 ± 9.7	<.001
Distensibility (mmHg ⁻¹)	369	9.1 ± 6.9	129	6.2 ± 4.5	<.001

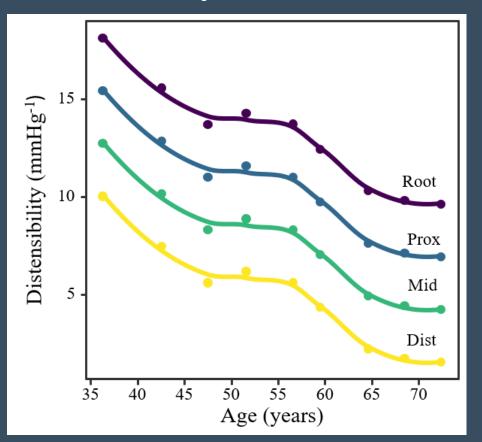
7

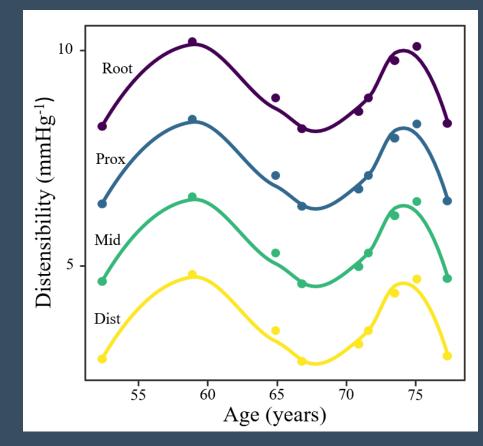

Mixed-Effects Modeling on Distensibility

Variable	Aneurysm (N = 369)			CABG (N = 129)				
	Univariable		Multivariable		Univariable		Multivariable	
	Beta Coeff.	P-value	Beta Coeff.	P-value	Beta Coeff.	P-value	Beta Coeff.	P-value
Age	17	<.001	19	<.001	08	<.001		
Region		<.001		<.001		<.001		<.001
Root	8.4		8.4		5.6		5.5	
Prox	1.2		.9		.02		.13	
Mid	.19		.02		18		09	
HTN								
Ascending Aorta Length	.02	.40			.01	.78		
Aortic Area at Image Location	07	.29			66	.001		

Variables of Importance on Distensibility

Aneurysm Cohort


CABG Cohort



The Relationship Between Age and Region on Distensibility

Aneurysm Cohort

CABG Cohort

Multivariable Mixed-Effects of Combined Cohorts

Variable	Combined Aneurysm and CABG Patients				
	Multivariable Model				
	Beta Coeff.	P-value			
Age	08	.15			
Region		<.001			
Root	7.54				
Prox	.67				
Mid	04				
HTN	.76	.25			
Ascending Aorta Length	.05	.01			
Aortic Area at Image Location	.4	.03			
Aortic Area at Image Location * Age	006	.05			

The mixed effect model demonstrates a negatively associated interaction term between age and the aortic area at the image location, suggesting a trade off between these two covariates.

Given gradient boosting models have demonstrated a large effect of age, the correlated effect of area is minimized.

Clinical Relevance

Lengthwise regional variation along the ascending aorta consistently emerges as a significant predictor of in-vivo biomechanical outcomes.

Age had a more pronounced impact in the aneurysm cohort, suggesting that the presence of an ascending aneurysm may exacerbate age related aortic tissue dysfunction.

Clinical judgement is necessary to determine the optimal surgical timing balancing age and ascending aortic area.

Conclusions

Region and age are the most influential predictors of in-vivo ascending aneurysmal aortic mechanics
The importance of age differs between aneurysmal and non-aneurysmal aortas

The interaction between aortic aneurysm and age is complex, and additional imaging modalities should be employed to further assess in-vivo biomechanics.