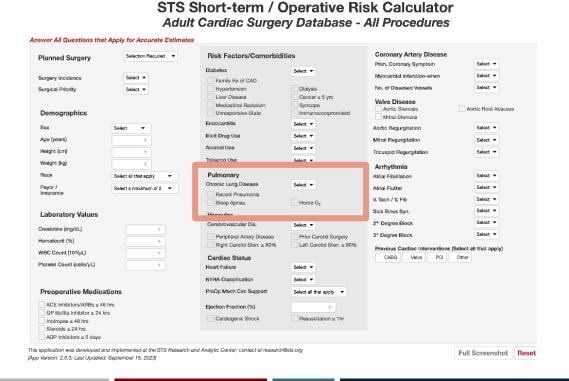
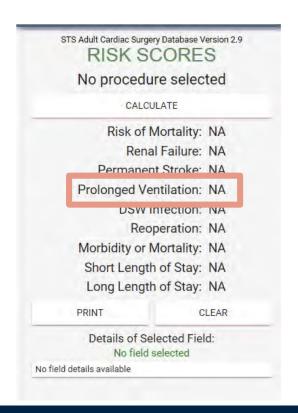


Preemptive venovenous extracorporeal membrane oxygenation cannulation for post operative pulmonary support in aortic surgery

- 1-Department of Anesthesiology and Critical Care
- 2 Department of Surgery, Division of Cardiothoracic Surgery

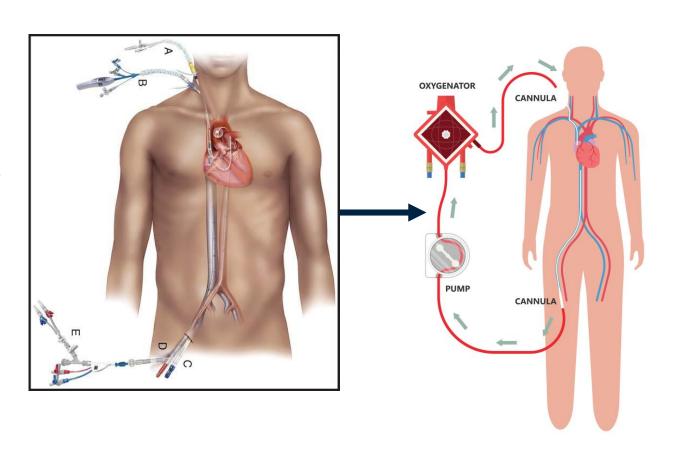
Joyce Ho^{1,2}, Jamie Bloom¹, Vincent Sacks¹, Kendall Lawrence², Chase Brown², Audrey Spelde¹, Jacob Gutsche¹, Wilson Szeto², Joseph Bravaria², Asad Usman¹


April $25^{th} - 26^{th}$, 2024


Conflicts of Interest

► No conflicts to disclose

Severe Lung Disease and Aortic Surgery


- Preexisting comorbid severe lung disease present a unique challenge for patients who require elective or semi-elective aortic surgery
- ► STS calculator for risk predicts post operative Pulmonary complications and prolonged ventilator

MIS AORTIC Surgery Cannulation

- Using the principles of drainage in MIS surgery, pre-planning for post operative VV ECMO can be made up front
- 25 French Femoral Venous Cannula
 - Typically in MIS aortic surgery the femoral drain is positioned in the mid right atrium.
 For VV ECMO the cannula is in the IVC/RA junction to avoid VV ECMO recirculation
- **21 French Internal Jugular Cannula
 - Typically the working cutoff for a neck drain is based on BSA, Smaller BSA don't need neck drain, and if a neck drain is used typically it's a 15 French. Here a large 21 drain is placed for VV ECMO flow

Peripheral CPB drainage to VV ECMO Cases

Cas	se A	Age	вмі	Surgery	Indication	Gender	PFTs	СТ	Lung Comorbidities	Echo
1		32	57.0	AVR – 25 Inspiris Valve	Endocarditis	Male	Restricted. Severely reduced FEV1, Severely reduced DLCO	Bilateral ground glass opacities with consolidation	Pulmonary Effusion, COPD, COVID-19	EF 50%, Severe Al. No aortic stenosis
2		73	30.1	AVR + Root Ascending Replacement (Konnect 27)	Aortic Regurgitation	Male	FEV1= 0.89 L (31.8%) FVC 2.6L	Diffuse Advanced destructive centrilobular emphysema	COPD	EF 50% Severe AI. Normal gradients
3		67	23.8	Redo-AVR – (Konnect 25)	Aortic Regurgitation	Male	FEV 1 = 2.55L (62%), FVC 4.08	Severe Emphysema	COPD, ILD, 42 year smoking history, 20 cig/day	EF 60%, Severe AI. Gradient 37/18 mmHg PASP 64 mmHg.

Outcomes

Case	CPB Time	Duration of Mechanical Ventilator	Hours on ECMO	Days on ECMO	ICU Length of Stay (days)	Hospital Length of Stay (days)
1	169 min	160 hours	92	4	20	38
2	175 min	40 hours	30	1	2	6
3	291 min	30 hours	32	1	3	19

Conclusion

- ▶ With the advent of MIS aortic surgery, in situ cannulas can be used as a platform for conversion to VV ECMO after the conclusion of the case
- Preoperative planning is necessary to accomplish this transition
- ► Anticoagulation free VV ECMO is possible
 - Ok to fully reverse heparinization
- ► If RA and or RCP isolation is needed then the cannulas will need to be positioned for correct caval snaring
- ► Select cases with high risk for post operative pulmonary complications or prolonged mechanical ventilation may be considered for early planned VV ECMO support immediately after CPB
- ► On table extubation is possible to limit ventilator exposure