Readmission Burden and Longitudinal Survival Among Patients Requiring Tracheostomy After Surgery for ATAAD.

Carlos Diaz-Castrillon, Derek Serna-Gallegos, Pyongsoo Yoon, Johannes Bonatti, Danny Chu, David Kaczorowski, Jianhui Zhu, Julie Phillippi, Floyd Thoma, Danial Ahmad, Ibrahim Sultan University of Pittsburgh Medical Center, Pittsburgh, PA, UPMC Heart and Vascular Institute, Pittsburgh, PA

Background

- The management of patients who survived surgery for acute type A aortic dissection (ATAAD) presents significant challenges.
- Tracheostomy requirement often correlates with complex clinical pathways and increased resource utilization.
 - There is a notable lack of comprehensive data analyzing longitudinal survival outcomes in this specific patient group

Objective

To characterize the impact of requiring a tracheostomy on readmission rates within 1-year and survival after surgical repair of ATAAD

Methods - Study Design

Methods - Analysis

Perioperative variables across tracheostomy groups

Kaplan Meier function and Cox regression analysis for long-term survival

Resource utilization was defined by the number of readmissions during the first year after the index operation.

Results – Baseline demographic and clinical variables

Variable	No tracheostomy	Tracheostomy	
	(n=500)	(n=52)	p-value
Age (years)	61.3 ± 13.4	63.6 ± 12.1	0.23
Female	193 (38.60)	27 (51.92)	0.06
Race			
Caucasian	415 (83.00)	39 (75.00)	0.25
African American	66 (13.20)	10 (19.23)	0.55
Other	19 (3.80)	3 (5.77)	
Body mass index (kg/m ²)	29.9 ± 6.55	32.1 ± 8.63	0.02
Hypertension	379 (75.80)	46 (88.46)	0.03
Diabetes mellitus	48 (9.60)	11 (21.15)	0.01
Chronic lung disease	66 (13.20)	12 (23.08)	0.05
Smoke status			
Never	103 (20.60)	11 (21.15)	
Within 1 yr prior surgery	53 (10.60)	9 (17.31)	0.43
Other smoking	174 (34.80)	14 (26.92)	
Others (unknown)	170 (34.00)	18 (34.62)	
Peripheral vascular disease	174 (34.80)	17 (32.69)	0.76
Coronary artery disease	67 (13.40)	8 (15.38)	0.69
Tamponade, rupture, or shock	154 (30.80)	15 (28.85)	0.77
Any malperfusion syndrome	145 (29.00)	26 (50.00)	0.002

Cardiac Surgery

Results – Operative outcomes

Variable	No tracheostomy (n=500)	Tracheostomy (n=52)	p-value
In-hospital mortality	47 (9.40)	7 (13.46)	0.34
Total postoperative length of stay (days)	10.1 ± 7.82	37.9 ± 22.6	<0.001
Postoperative pneumonia	34 (6.80)	26 (50.00)	<0.001
New-onset cerebrovascular accident	16 (3.20)	8 (15.38)	<0.001
Mechanical ventilation time (hours)			
Mean ± SD	26.8 ± 45.8	201.5 ± 263.0	<0.001
Median (IQR)	10.0 (5.6-23.0)	82.7(20.6-337.5)	<0.001
New-onset hemodialysis	44 (8.80)	23 (44.23)	<0.001
Reexploration for excessive bleeding	41 (8.20)	10 (19.23)	0.009
Residual aortic regurgitation (≥ moderate)	7 (1.40)	0 (0.00)	0.39
1-month follow-up ejection fraction	56.8 ± 8.59	53.7 ± 16.3	0.05

Results – Readmission Burden

Rate of Readmission within 1-year	No Tracheostomy	Tracheostomy	P value
First readmission - Any	29.58%	44.23%	0.03
ICU First readmission	16.10%	34.62%	<0.001

Time to readmission (days)	No Tracheostomy	Tracheostomy	P value
First readmission	269 (21-1158)	67 (8-230)	0.01
ICU First readmission	501 (51-1469)	106 (27-364)	0.05

1-year readmission number		No Tracheostomy	Tracheostomy	P value
First readmission	Mean ± Std	0.36 ± 0.83	0.63 ± 1.01	0.02
	Median (IQR)	0 (0-0)	0 (0-1)	0.01
ICU First readmission	Mean ± Std	0.17 ± 0.46	0.35 ± 0.59	0.007
	Median (IQR)	0 (0-0)	0 (0-1)	0.001

Results – Long Term Survival

KM estimate of survival after discharge

	1 year	5 years	10 years
No Tracheostomy	95.3 (93.2-97.8)	86.1 (82.5-89.3)	73.5 (67.2-79.3)
Tracheostomy	77.8 (64.6-88.6)	62.1 (46.8-76.2)	43.2 (25.0-62.3)

Cardiac Surgery

Results – Longitudinal Survival

Multivariable Cox proportional-hazards regression model for mortality after surgery for acute Type A aortic dissection (excluding death in hospital)

HEART AND

UPM

Variable	Hazard Ratio	95% CI	p-value
Tracheostomy	1.76	1.03, 3.00	0.040
Age (years)	1.03	1.01, 1.05	0.001
Female (ref: male)	0.73	0.47, 1.12	0.150
African American (ref: Caucasian)	1.88	1.10, 3.21	0.020
Hypertension	1.75	0.95, 3.22	0.075
Diabetes mellitus	2.36	1.44, 3.86	<0.001
COPD	1.44	0.90,2.30	0.125
Postoperative hemodialysis	2.73	1.59, 4.69	<0.001

Limitations

- Limited Generalizability: Findings from a single-center analysis in Western Pennsylvania may not be generalizable to a broader population.
- Sample size: The uneven distribution of patients among racial groups and the smaller sample size of black patients might limit the statistical power to detect meaningful differences.
- **Confounding Factors**: A single-center analysis may not adequately control for potential confounding variables

- Requiring a tracheostomy after surgical repair of ATAAD has a significant impact on increased mortality during the first year.
- Higher readmission burden in patients with tracheostomy highlights the substantial resource utilization associated with this patient population.
- These findings highlight the importance to optimize comprehensive postoperative protocols of care, aiming to enhance rehabilitation and manage resource utilization effectively for improved long-term survival after ATAAD surgery.

