Size and Morphological Differences of Thoracic Cage in Marfan vs NonMarfan Patients

Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan

Yuki Kuroda, Takehiko Matsuo, Hiroaki Osada, Masahide Kawatou,
Takahide Takeda, Fumie Takai, Kazuhiro Takatoku, Hiromasa Kira,
Yasuyuki Fujimoto, Haruka Fujimoto, Kazuyoshi Kanno, Tadashi Ikeda, Kenji Minatoya

Backgrounds

- The standard spiral incision sometimes fails to secure adequate exposure of the proximal descending aorta and aortic arch, particularly in patients with flat chests, such as those with Marfan syndrome.
- The straight incision with rib-cross (SIRC) approach has been reported to offer improved exposure for such patients.

Objective

- When discussing the optimal incision and approach for the thoracic aortic surgeries, Few data on the size and morphology of the thoracic cage is found.
- This study aimed to describe the size and morphological differences in the thoracic cage between Marfan and non-Marfan patients.

Study design

- Single-center retrospective cohort study

- Patients

- 18 years or older
- chest CT performed

Sex- and age-matched

Study population
47 Marfan patients vs 47 non-Marfan patients

- multiple linear regression
- Statistical analysis
- Pearson's correlation coefficient (rib angles and AP distance, sternumvertebra)

CT measurements

- Anteroposterior distance, Sternum-vertebra distance, Transverse distance, Thoracic cage area (axial view)

Aortic arch level

Aortic valve level

- Rib angles (sagittal view)
- Thoracic cage volume (3D)

Rib angles

Baseline characteristics

Characteristics	Non-Marfan (N = 47)	Marfan (N=47)	P value
Age, years	$41.6(14.1)$	$40.9(13.2)$	0.8
Men	$26(55 \%)$	$26(55 \%)$	>0.9
Height, cm	$166.3(12.1)$	$177.1(10.7)$	<0.001
Weight, kg	$62.6(15.5)$	$63.3(15.2)$	0.8
BMI, kg/m²	$22.3(3.6)$	$20.0(3.4)$	0.002
BSA, m²	$1.7(0.3)$	$1.8(0.2)$	0.091
Annuloaortic ectasia	$10(21 \%)$	$40(85 \%)$	<0.001
Thoracic aortic true aneurysm	$17(36 \%)$	$2(4.3 \%)$	<0.001
Aortic dissection	$24(51 \%)$	$8(17 \%)$	0.001
			Mean (SD) or n (\%)

Size of thoracic cage in the axial section

Characteristics	Non-Marfan $(\mathbf{N}=47)$	Marfan $(\mathbf{N}=47)$	P value
Aortic arch level			
AP distance, mm	$134.6(18.6)$	$138.9(20.4)$	0.3
Sternum-vertebrae, mm	$54.4(12.4)$	$58.8(15.0)$	0.12
Transverse distance, mm	$219.7(23.1)$	$233.0(27.3)$	0.012
AP/Transverse	$0.61(0.06)$	$0.60(0.10)$	0.5
Thoracic cavity area, cm^{2}	$146.0(49.0)$	$176.9(43.3)$	0.002
Aortic valve level			$175.3(26.1)$
AP distance, mm	$178.3(23.8)$	$96.7(22.9)$	0.6
Sternum-vertebrae, mm	$101.3(18.7)$	$256.2(27.3)$	0.3
Transverse distance, mm	$264.3(24.4)$	$0.69(0.12)$	0.13
AP/Transverse distance	$0.67(0.06)$	$294.9(60.2)$	0.4
Thoracic cavity area, cm^{2}	$316.6(68.5)$	0.11	

Volume and rib angles

Characteristics	Non-Marfan $(\mathbf{N}=\mathbf{4 7})$	Marfan $(\mathbf{N}=47)$	P value
Volume of thoracic cage, cm^{3}	$6,250.5(1,888.3)$	$6,340.7(1,460.3)$	0.8
Rib angles			
The 4th rib, degrees	$55.4(8.8)$	$45.0(8.9)$	<0.001
The 5th rib, degrees	$51.3(8.4)$	$42.2(8.4)$	<0.001
The 6th rib, degrees	$49.3(8.7)$	$39.7(8.2)$	<0.001

Marfan patients had significantly acute rib angles than non-Marfan patients.

Adjusted analysis (sex, age, BSA)

	Crude			Adjusted			Beta: Difference between Marfan and non-Marfan patients
Characteristics	Beta	95\% CI	p-value	Beta	95\% CI	p-value	
Aortic arch level							
AP distance, mm	4.34	-3.54, 12.23	0.3	1.62	-4.16, 7.41	0.6	
Sternum-vertebrae, mm	4.41	-1.16, 9.98	0.12	2.83	-2.46, 8.12	0.3	CI: confidence interval AP: anteroposterior
Transverse distance, mm	13.35	3.11, 23.59	0.012	9.12	1.31, 16.94	0.025	
Thoracic cavity area, cm^{2}	30.91	12.22, 49.61	0.002	25.70	9.63,41.78	0.002	
Aortic valve level							
AP distance, mm	-3.05	-13.14, 7.05	0.6	-7.63	-14.31, -0.95	0.028	
Sternum-vertebrae, mm	-4.58	-13.04, 3.88	0.3	-7.98	-14.59, -1.36	0.020	
Transverse distance, mm	-8.16	-18.61, 2.29	0.13	-13.43	-20.36, -6.50	<0.001	
Thoracic cavity area, cm^{2}	-21.72	-47.80, 4.36	0.11	-36.08	-50.96, -21.19	<0.001	Marfan patients
Rib angles							flatter chest wa
The 4th rib, degrees	-10.46	-14.04, -6.88	<0.001	-11.38	-14.63, -8.13	<0.001	- more acute rib angle
The 5th rib, degrees	-9.16	-12.55, -5.77	<0.001	-9.96	-13.17, -6.76	<0.001	
The 6th rib, degrees	-9.63	-13.06, -6.21	<0.001	-10.69	-13.87, -7.52	<0.001	

Rib angles and AP distance, sternumvertebra distance at the aortic arch level

Group $\#$ Non-Marlan - Marlan

Sternum-vertebrae (mm)

Group $\#$ Non-Marfan \rightleftharpoons Marlan

Rib angles and AP distance, sternumvertebra distance at the aortic valve level

Discussion

- The spiral incision offers an optimal surgical field, particularly in patients with a large thoracic cage, while the surgical field is often limited for patients with flatter chest.
- The SIRC approach offers better exposure of the
 proximal descending aorta and aortic arch.
- The number of ribs for the exposure to be transected is usually less in Marfan patients.

Conclusions

- Marfan patients had a flatter chest wall and acute rib angles than non-Marfan patients.
- The SIRC approach for thoracic and thoracoabdominal aortic aneurysms might be more suitable for patients with a flatter chest wall, such as those with Marfan syndrome.
- Further studies are necessary to clarify the impact of thoracic cage morphological differences on the procedures and their outcomes.

