The Impact of Birth Weight and Gestational Age on Neo-Aortic Root Dilation in Post Arterial Switch Patients

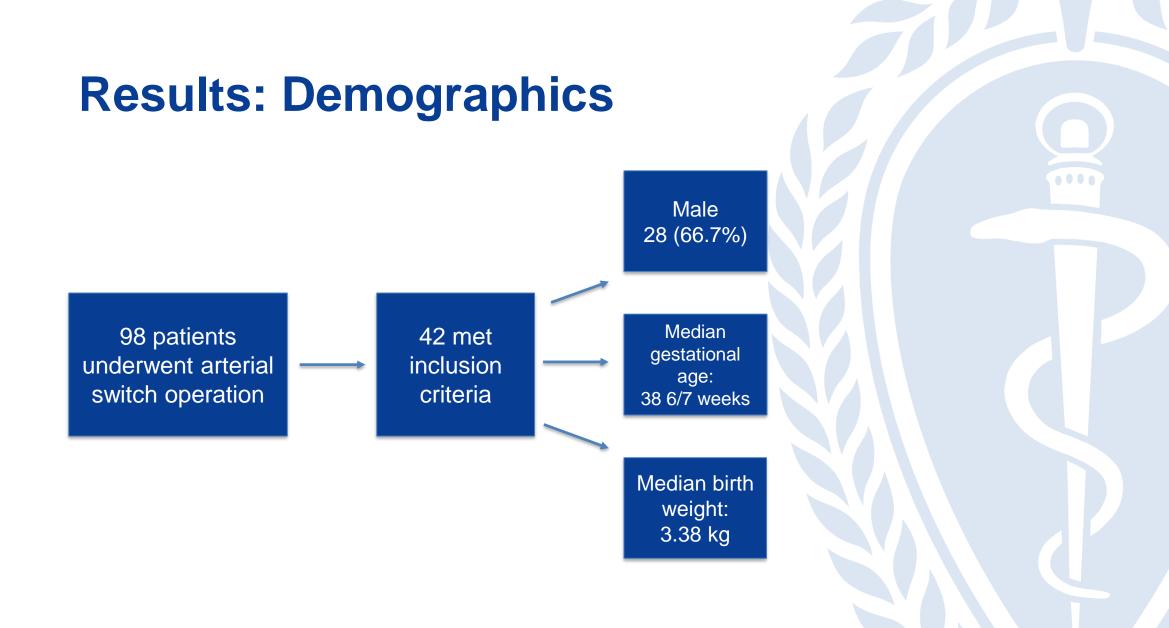
Matthew S. Purlee B.S., Lindsey M. Brinkley B.S., John-Anthony Coppola M.D., Mark S. Bleiweis M.D., Jeffrey P. Jacobs M.D., Giles J. Peek M.D., Dalia Lopez-Colon PhD, Dipankar Gupta M.D.

Congenital Heart Center, University of Florida, Gainesville, FL

Background

- Arterial switch operation (ASO) initially described in 1975 is the standard surgical approach for transposition of the great arteries¹.
- Neo-aortic root dilation is a near ubiquitous natural sequelae after an arterial switch operation^{2,3}.
- Several studies have demonstrated accelerated neo-aortic root growth within the first year of life after an arterial switch operation that severely outpaces normal somatic growth in the general population^{4,5}.
- Despite the importance of first year post ASO growth velocity and near universal prevalence of neo-aortic root dilation, few studies have analyzed what patient characteristics correlate with neo-aortic root dilation during this period.

Objective


 To determine the impact of multiple factors including birth weight and gestational age on patients with transposition of the great arteries that underwent an arterial switch operation.

Methods

- Retrospective chart review of patients that underwent an arterial switch operation (ASO) from March 2002-July 2023.
- Linear regression and multiple linear regression were used to identify predictive relationships between perinatal and anatomical features and neo-aortic growth rate during the first year post ASO.
- Neo-aortic growth rate during the first year of life post ASO was calculated using the formula below:

(Neo-aortic root diameter at 1 year post-op echo)- (Neo-aortic root diameter at first post-op echo)

Time between echocardiograms (years)

Results: Demographics (cont.)

• Additional medical history and morphological subtype listed in Table 1.

Table 1.

Demographics	
Male	28 (66.7%)
Median gestational age, weeks	38 6/7 [37 6/7,39 2/7]
Median birth weight, kg	3.38 [2.91,3.69]
Median age at ASO, days	15.5 [9,20]
Neo-aortic Root Growth Rate (cm/year)	0.74 [0.56,0.97]
Medical History	
Abnormal coronary anatomy	15 (35.7%)
Chromosomal abnormality	10 (23.8%)
Morphological Subtype	
TGA/IVS	31 (73.8%)
TGA/VSD	7 (16.7%)
TGA/VSD/Hypoplastic Aortic Arch	2 (4.8%)
DORV/TGA	2 (4.8%)

Results: Birthweight and Gestational Age

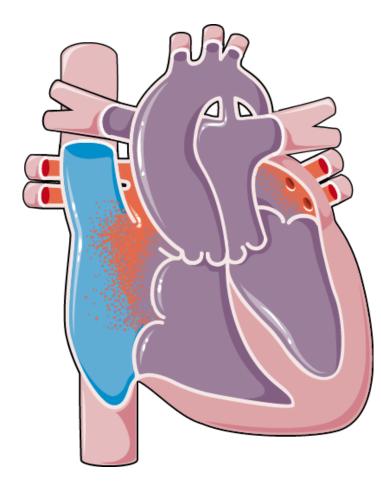
- Neither birth weight nor gestational age have a significant correlation with neo-aortic root growth rate during the first year of life when analyzed in isolation.
- However, when analyzed in tandem as part of a multiple linear regression model:
 - Birth weight (0.93) and gestational age (-0.22) had a statistically significant predictive relationship with neo-aortic root growth in the first year of life.

Conclusion

- Birth weight and gestational age when modeled together can be statistically predictive of neo-aortic root growth within the first year of life post arterial switch operation.
- Future studies should analyze the mechanism by which these two factors influence neo-aortic root growth during this physiologically sensitive time in the post arterial switch course.

References

1. Jatene AD, Fontes VF, Paulista PP, et al. Successful anatomic correction of transposition of the great vessels. A preliminary report. *Arq Bras Cardiol*. 1975;28(4):461-464.


2. Zhu MZL, Fricke TA, Buratto E, Chowdhuri KR, Brizard CP, Konstantinov IE. Outcomes of neo-aortic valve and root surgery late after arterial switch operation. *J Thorac Cardiovasc Surg.* 2024;167(4):1391-1401.e3. doi:10.1016/j.jtcvs.2023.09.038

3. Sengupta A, Carreon CK, Gauvreau K, et al. Growth of the Neo-Aortic Root and Prognosis of Transposition of the Great Arteries. *J Am Coll Cardiol.* 2024;83(4):516-527. doi:10.1016/j.jacc.2023.10.023

4. van der Palen RLF, van der Bom T, Dekker A, et al. Progression of aortic root dilatation and aortic valve regurgitation after the arterial switch operation. *Heart*. 2019;105(22):1732-1740. doi:10.1136/heartjnl-2019-315157

5. Bové T, De Meulder F, Vandenplas G, et al. Midterm assessment of the reconstructed arteries after the arterial switch operation. *Ann Thorac Surg.* 2008;85(3):823-830. doi:10.1016/j.athoracsur.2007.10.043

Thank You

