# The Preventive Potential of Bupropion on Aortic Aneurysm Progression: A Real-World Data Analysis

Panagiotis Tasoudis, Chris Agala, Kyle C. Alexander, Elizabeth Collins, John Blackwell, Yiwen Ding, Thomas G. Caranasos, John S. Ikonomidis, Adam W. Akerman

Department of Surgery, Division of Cardiothoracic Surgery, University of North Carolina at Chapel Hill

### Epidemiology and Challenges:

- Aneurysm pathogenesis encompasses various disorders affecting the aorta, with both thoracic and abdominal regions affected.
- Approximately 26,000 people die from AAs annually in the U.S., making it a significant health concern.
- Aneurysm disease is a leading cause of death, and its prevalence is expected to rise, imposing a substantial burden on healthcare resources.
- Surgical intervention is resource-intensive, emphasizing the need for novel therapeutic modalities to alleviate the associated costs.

<sup>1.</sup> Elefteriades JA. Thoracic aortic aneurysm: reading the enemy's playbook. Yale J Biol Med. 2008;81(4):175-86

<sup>2.</sup> Dua A, Kuy S, Lee CJ, Upchurch GR, Jr., Desai SS. Epidemiology of aortic aneurysm repair in the United States from 2000 to 2010. J Vasc Surg. 2014;59(6):1512-7.

## Background/Significance

- Aortic aneurysms (AAs) are a significant cause of morbidity and mortality, posing challenges for cardiovascular surgeons.
- No effective medical therapy currently exists; aortic rupture is a common cause of death.
- The FDA-approved antidepressant Bupropion has shown promise in regulating pathways associated with aneurysm progression.

<sup>1.</sup> Elefteriades JA. Thoracic aortic aneurysm: reading the enemy's playbook. Yale J Biol Med. 2008;81(4):175-86

<sup>2.</sup> Dua A, Kuy S, Lee CJ, Upchurch GR, Jr., Desai SS. Epidemiology of aortic aneurysm repair in the United States from 2000 to 2010. J Vasc Surg. 2014;59(6):1512-7.

# Background/Significance

- Bupropion modulates pathways in aortic aneurysm progression.
- It suppresses IL-6, MMP-2, and MMP-9 while increasing TIMP-1.
- Dual action aims to mitigate aortic aneurysm advancement.

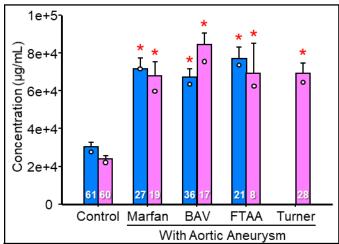
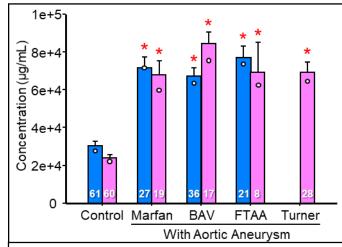
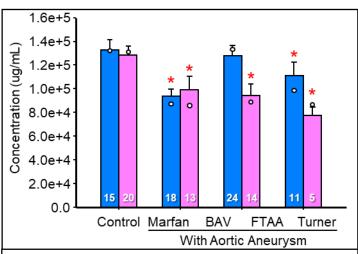
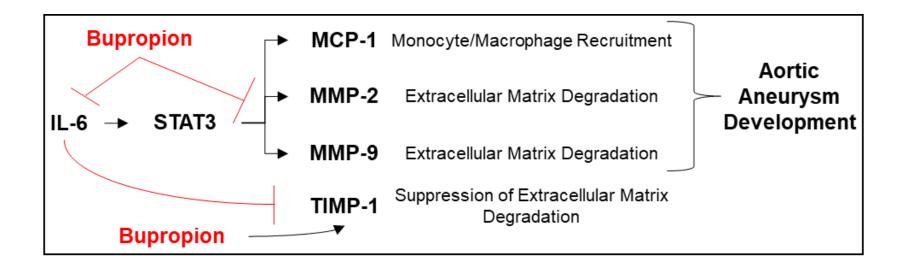



Figure 1. Human Plasma MMP-2 Levels. Circulating levels of MMP-2 are **elevated** in different etiologies of thoracic AA patients. All data is displayed as mean (bar) ± standard error of the mean. Median is displayed as a white circle, sample sizes are denoted at the base of each bar. \*p<0.05 vs sex-matched non-AA control. Abbreviations: Bicuspid Aortic Valve (BAV). Familial thoracic AA



Figure 2. Human Plasma MMP-2 Levels. Circulating levels of MMP-2 are elevated in different etiologies of thoracic AA patients. All data is displayed as mean (bar) ± standard error of the mean. Median is displayed as a white circle, sample sizes are denoted at the base of each bar. \*p<0.05 vs sex-matched non-AA control. Abbreviations: Bicuspid Aortic Valve (BAV). Familial thoracic AA



**Figure 3. Human Plasma TIMP-1 Levels.** Circulating levels of TIMP-1 are **reduced** in different etiologies of thoracic AA patients. All data is displayed as mean (bar) ± standard error of the mean. Median is displayed as a white circle, sample sizes are denoted at the base of each bar. \*p<0.05 vs sex-matched non-AA control. Abbreviations: Bicuspid Aortic Valve (BAV), Familial thoracic AA (FTAA).

# Background/Significance

.

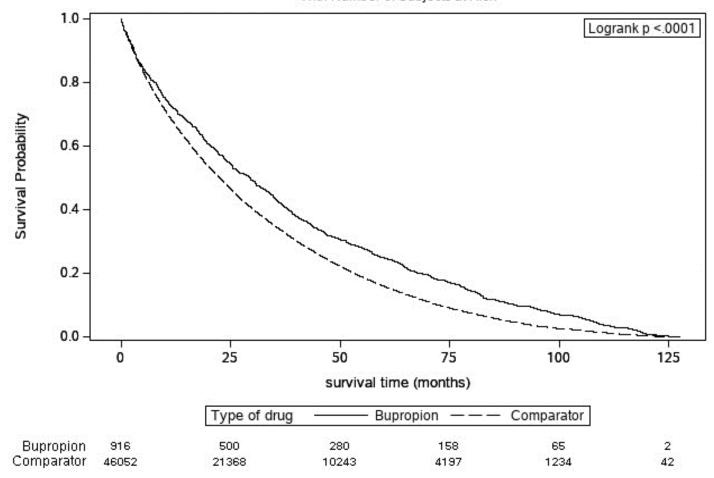


#### Methods

- Utilized Medicare Claims database (2007-2017)
- Diagnosis of major depressive disorder, seasonal affective disorder, and tobacco use patients.
- Intervention: Bupropion
- Comparative group: SSRIs, SNRIs, mirtazapine, buspirone, nefazodone, trazodone, vilazodone, vortioxetine, varenicline, and nicotine
- Outcome: Aortic aneurysm development and aortic interventions
- Analysis: Descriptive statistics and Kaplan-Meier method

## Results

|                                 | Compa<br>N=46 |      | Bupropion<br>N=916 |      |  |
|---------------------------------|---------------|------|--------------------|------|--|
|                                 | Frequenc      |      | Frequenc           |      |  |
| Characteristic                  | У             | %    | У                  | %    |  |
| Male                            | 17652         | 38.3 | 352                | 38.4 |  |
| Age 65-74 years                 | 26816         | 58.2 | 625                | 68.2 |  |
| Age 75-84 years                 | 14736         | 32.0 | 242                | 26.4 |  |
| Age 85+ years                   | 4500          | 9.8  | 49                 | 5.3  |  |
| Race: Black of African American | 2184          | 4.8  | 33                 | 3.6  |  |
| Race: Hispanic                  | 1305          | 2.8  | 22                 | 2.4  |  |
| Race: Other                     | 1407          | 3.1  | 23                 | 2.5  |  |
| Race: White                     | 41012         | 89.3 | 835                | 91.5 |  |
| CCI cat 0                       | 11991         | 26.0 | 292                | 31.9 |  |
| CCI cat 1                       | 11516         | 25.0 | 247                | 27.0 |  |
| CCI cat 2+                      | 22545         | 49.0 | 377                | 41.2 |  |
| Current smoker                  | 14677         | 31.9 | 228                | 24.9 |  |
| Former smoker                   | 19287         | 41.9 | 369                | 40.3 |  |
| Obese                           | 2439          | 5.3  | 43                 | 4.7  |  |
| Marfan syndrome                 | 25            | 0.1  | 1                  | 0.1  |  |
| Turner syndrome                 | 19            | 0.0  | 1                  | 0.1  |  |
| Ehlers Danlos syndrome          | 11            | 0.0  | 0                  | 0.0  |  |
| Loeys Dietz syndrome            | 46            | 0.1  | 0                  | 0.0  |  |
| Familial TAA                    | 833           | 1.8  | 15                 | 1.6  |  |
| ACTA2FBN1MFAP5                  | 507           | 1.1  | 5                  | 0.5  |  |
| Bicuspid aortic valve           | 199           | 0.4  | 4                  | 0.4  |  |
| Giant cell arteritis            | 918           | 2.0  | 14                 | 1.5  |  |
| Takayasu arteritis              | 32            | 0.1  | 0                  | 0.0  |  |
| Genetic predisposition          | 2519          | 5.5  | 39                 | 4.3  |  |


## Results

|                                      | Comparator |        |       |        |     |     |         |
|--------------------------------------|------------|--------|-------|--------|-----|-----|---------|
|                                      | mean       | std    | range | median | p25 | p75 |         |
|                                      | 30.8       | 27.8   | 127   | 22     | 8   | 46  | p-value |
| Time to aneurysm Diagnosis or repair |            | <.0001 |       |        |     |     |         |
|                                      | mean       | std    |       | median | •   | p75 |         |
|                                      | 38         | 33     | 127   | 29     | 10  | 60  |         |

#### Results

Kaplan-Meier Plot: Survival time to aneurysm diagnosis or repair by bupropion/comparator drugs in the Medicare database 2007-2017, n=46968

With Number of Subjects at Risk



#### Conclusions

#### Key Finding from Real-World Data Analysis:

 Bupropion demonstrates a potential protective effect against aneurysm development and progression.

#### Implications of our Findings:

- Challenge Bupropion's conventional views of its pharmacological effects.
- Expand Bupropion's scope beyond antidepressant use.
- Suggest a novel avenue for preventive cardiovascular interventions.

#### Call to Action:

 Further research and exploration are warranted for the potential clinical application of Bupropion in preventing aortic aneurysms.