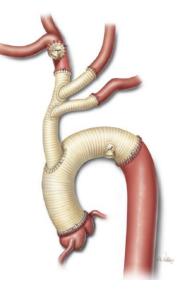
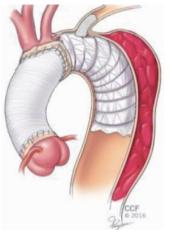
#### HENRY FORD HEALTH

### Decreased Mortality after Total Arch Replacement with Frozen Elephant Trunk in Acute Type A Aortic Dissection: An Analysis of the STS Database

Henry Kwon, MD, George Divine, MD, Loay Kabbani, MD, Kyle Miletic, MD Aorta Center, Departments of Cardiac and Vascular Surgery, Henry Ford Hospital

#### Disclosures


- None
- The data for this research were provided by The Society of Thoracic Surgeons' National Database Participant User File Research Program. Data analysis was performed at the investigators' institution(s).



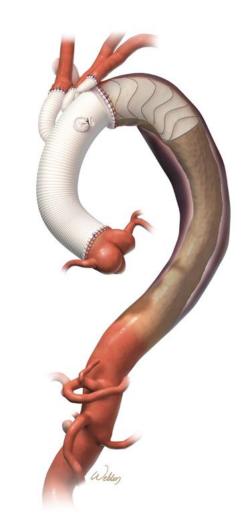

# Acute Type A Aortic Dissection

- Acute Type A Aortic Dissection morbidity and mortality remain high which increases with organ malperfusion
- For dissections greater than zone 2, Total Arch replacement (TAR) and TAR with Frozen Elephant Trunk (FET) are viable surgical options
- There is increased enthusiasm for aggressive arch replacement with FET
  - -Provides Landing zone for future endovascular intervention
  - -Improve true lumen perfusion and decrease false lumen flow

#### HENRY FORD HEALTH



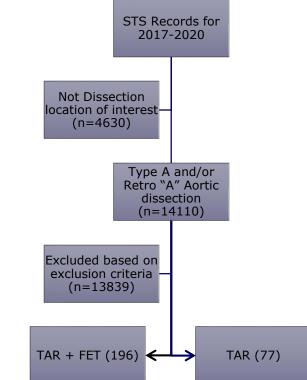



Total Arch Replacement (TAR)

LeMaire *et al. Ann* Cardiothorac Surg. 2013 Total Arch Replacement (TAR)with Frozen Elephant Trunk (FET)

**Roselli** *et al.* Eur J Cardiothorac Surg, 2023

# Concerns regarding FET


- Technically challenging
- •Longer circulatory arrest and crossclamp times
- Spinal cord ischemia
- Increase risk of complications



Coselli *et al*. *J Thorac Cardiovasc Surg*, 2022

# Study Aims and Patient Selection

- What are the outcomes of patients who underwent either TAR alone or TAR with FET?
- Society of Thoracic Surgeons Database queried between January 2017 to December 2020 (n=18706)
- Inclusion Criteria
  - All patient with distal extent greater than zone 2 were included
- Exclusion
  - Previous cardiac surgery
  - No Arch Repair
  - Dissection >14 days
  - Hemi-Arch Repair or Hemi-Arch Repair with Frozen Elephant trunk
  - missing data such as distal extent information



### Methods

• TAR  $\pm$  FET (n= 237) were analyzed

- Groups: TAR without FET (n=77) & TAR with FET (n=196)

- Demographic, intraoperative, and post-operative data were analyzed using descriptive statistics.
- Primary Outcome of interest: 30 Day Mortality presented as odds ratio
- Secondary Outcome of interest: ICU length of stay, Hospital length of stay, Readmissions, Post-operative complications (neurological symptoms, re-operation for bleed, recurrent laryngeal nerve injury, pneumonia, venous thromboembolism, renal failure, liver dysfunction)
- Bias minimization via multiple regression to calculate risk adjusted odds ratio adjusted for preselected variables
  - Pre-selected variables: age, sex, race, high volume center (>30 cases per year), and preoperative malperfusion

# Demographic & Perioperative Data

| Variable                               | Response                             | TAR alone<br>(n=77)          | TAR with FET (n=196)           | P-value |
|----------------------------------------|--------------------------------------|------------------------------|--------------------------------|---------|
| Patient age (years)                    | Median (Q1,Q3)                       | 54 (48,65)                   | 59 (49,66)                     | 0.42    |
| Race (White) N (%)                     | Yes<br>No                            | 38 (52%)<br>35 (48%)         | 118 (65%)<br>63 (35%)          | 0.05    |
| Race-(Black/African<br>American) N (%) | Yes<br>No                            | 30 (41%)<br>43 (59%)         | 53 (29%)<br>128 (71%)          | 0.07    |
| Sex N (%)                              | Male<br>Female                       | 61 (79%)<br>16(21%)          | 146 (74%)<br>50 (26%)          | 0.41    |
| Malperfusion N (%)                     | Yes<br>No                            | 31 (43%)<br>41 (57%)         | 104 (58%)<br>76 (42%)          | 0.03    |
| <b>Aortic Valve Intervention</b> N (%) | No<br>Yes, planned<br>Yes, unplanned | 2 (4%)<br>43 (91%)<br>2 (4%) | 0 (0%)<br>115 (91%)<br>12 (9%) | 0.04    |
| Cardiopulmonary bypass<br>time         | Median (Q1,Q3)                       | 227.0 (191.0, 298.0)         | 244.0 (195.0, 302.0)           | 0.98    |
| Circulatory Arrest N (%)               | Yes                                  | 73 (95%)                     | 189 (96%)                      | 0.539   |

## **Unadjusted Outcomes**

| Variable                                                   | Response          | TAR alone<br>(n=77)     | TAR with FET (n=196)        | P-value |  |
|------------------------------------------------------------|-------------------|-------------------------|-----------------------------|---------|--|
| 30-day <b>mortality</b> , N<br>(%)                         | Alive             | 51 (66%)                | 154 (80)                    | 0.02    |  |
| Readmission                                                | Yes               | 10 (22%)                | 17 (4%)                     | 0.255   |  |
| Length of Stay (days)                                      | N, Median (Q1,Q3) | 51, 13 (8, 20)          | 158, 14 (10, 22)            | 0.326   |  |
| Initial ICU Hours                                          | N, Median (Q1,Q3) | 70, 116.8 (58.8, 213.6) | 184, 137.4 (84.9,<br>233.8) | 0.107   |  |
| Post-operative <b>Stroke</b> ,<br>N (%)                    | Yes               | 36 (31%)                | 76 (21%)                    | 0.147   |  |
| Post-operative<br><b>Paralysis</b> , N (%)                 | Yes               | 3 (5%)                  | 6 (4%)                      | 0.714   |  |
| Post-op neuro-transient<br>ischemic attack                 | Yes               | 18 (23%)                | 44 (22,4%)                  | N/A     |  |
| Post-operative<br><b>Pneumonia</b> N(%)                    | Yes               | 13 (22%)                | 23 (15%)                    | 0.232   |  |
| Post-operative <b>renal</b><br><b>failure</b> , N (%)      | Yes               | 19 (32%)                | 40 (26%)                    | 0.392   |  |
| Post-operative <b>Liver</b><br><b>dysfunction</b> , N (%)  | Yes               | 4 (7%)                  | 11 (7%)                     | 0.908   |  |
| Post-operative <b>Venous</b><br><b>Thromboembolism</b> , N | Yes               | 4(7%)                   | 9 (6%)                      | 0.816   |  |
| HENRY FORD HEALTH                                          |                   |                         |                             |         |  |

# **30-Day Mortality Adjusted Analysis**

| Variable                                     | Odds Ratio | Confidence Interval | P-value |
|----------------------------------------------|------------|---------------------|---------|
| 30-day mortality                             | 0.49       | 0.25-0.98           | 0.04    |
| Patient Age                                  | 1.01       | 0.98-1.04           | 0.42    |
| Race – White                                 | 0.35       | 0.11-1.10           | 0.72    |
| Race – Black/African<br>American             | 0.24       | 0.07-0.82           | 0.02    |
| Sex                                          | 0.71       | 0.35-1.44           | 0.34    |
| Malperfusion                                 | 2.03       | 1.04-3.95           | 0.04    |
| Sites volume fewer than<br>30 cases per year | 2.54       | 1.06-6.08           | 0.04    |

### Limitation

- Durability of outcomes were not assessed beyond 30 days
- Large database study without granular data and inability to evaluate decision making process of individual surgeons for one procedure versus another
  - -Randomized control trials may be of value.
- Comparatively small sample size preventing propensity matching along with missing data (<10%)

### **Conclusion & Future Directions**

- •Total Arch Replacement with FET is associated with reduced early mortality compared to TAR alone in those presenting with greater than zone 2 TAAD.
- Low-volume centers and those presenting with malperfusion were at increased risk of mortality
- Plan to expand the dataset beyond current date of 2017 to 2020 as the use of FET has increased over time



## Citation

- Roselli EE, Kramer B, Germano E, et al. The modified frozen elephant trunk may outperform limited and extended-classic repair in acute type I dissection. Eur J Cardiothorac Surg. 2023;63(6):ezad122. doi:10.1093/ejcts/ezad122
- LeMaire SA, Weldon SA, Coselli JS. Total aortic arch replacement: current approach using the trifurcated graft technique. Ann Cardiothorac Surg. 2013;2(3):347-352. doi:10.3978/j.issn.2225-319X.2013.05.02
- Coselli JS, Roselli EE, Preventza O, et al. Total aortic arch replacement using a frozen elephant trunk device: Results of a 1-year US multicenter trial. *J Thorac Cardiovasc Surg*. Published online September 6, 2022. doi:10.1016/j.jtcvs.2022.08.029
- Ho JYK, Chow SCY, Kwok MWT, Fujikawa T, Wong RHL. Total Aortic Arch Replacement and Frozen Elephant Trunk. Semin Thorac Cardiovasc Surg. 2021;33(3):656-662. doi:10.1053/j.semtcvs.2020.11.016
- Smith HN, Boodhwani M, Ouzounian M, et al. Classification and outcomes of extended arch repair for acute Type A aortic dissection: a systematic review and meta-analysis. Interact Cardiovasc Thorac Surg. 2017;24(3):450-459. doi:10.1093/icvts/ivw355
- lino K, Takago S, Saito N, et al. Total arch replacement and frozen elephant trunk for acute type A aortic dissection. J Thorac Cardiovasc Surg. 2022;164(5):1400-1409.e3. doi:10.1016/j.jtcvs.2020.10.135