Transfusion and Coagulation Management in Acute Type A Aortic Dissection

Philipp Pfeiffer¹, Vanessa Buchholz¹, Chris Probst¹, Ahmed Ghazy¹, Hendrik Treede¹, Daniel-Sebastian Dohle¹

¹Department of Cardiovascular Surgery, University Medical Center Mainz, 55131 Mainz, Germany

Background

- Acute type A aortic dissection (AAD) leads to activation of coagulation pathways and a decrease in available coagulation factors
- Surgical repair involves cardiopulmonary bypass (CPB), heparin administration, hypothermic circulatory arrest, and blood dilution, which further impair coagulation
- Ensuring hemostasis is crucial, as rethoracotomy increases hospital mortality significantly
- Transfusion and coagulation products are routinely required intraand postoperatively to establish sufficient hemostasis

Objective

 This retrospective study investigates the impact of various factors on the quantity of transfusions and coagulation factors needed during AAD treatment

Methods

- Patients were identified using our institutional aortic database
- Demographics, comorbidities, clinical status at time of presentation, procedural details, and the postoperative course were analyzed retrospectively
- Intra- and postoperative transfusions, administered coagulation factors, chest-drain and rethoracotomy rates were obtained from clinical records and stratified according to the clinical status at time of presentation
- Multivariable linear regression models for transfusion and substitution were calculated including the variables: age, gender, BSA, oral anticoagulation, Penn classification, CPB and distal ischemia times, lowest temperature, and extent of surgical repair

Results

- 369 patients were operated for AAD between 01/2017 and 12/2022
- Demographics, the prevalence of risk factors, and the clinical status at presentation are representative for AAD patients

Patient demographics	Total (n=369)
DeBakey type I dissection	281 (76.2%)
Age [years]	65.5±13.1
Male	235 (63.7%)
BMI [kg/m²]	27.3±5.4
BSA [m ²]	2.0±0.3
Hypertension	257 (69.6%)
Diabetes mellitus	27 (7.3%)
Nicotine abuse	79 (21.4%)
Coronary artery disease	65 (17.6%)
COPD	43 (11.7%)
Oral anticoagulation	51 (13.8%)
Previous cardiac surgery	28 (7.6%)

Status at presentation	Total (n=369)
Aortic valve regurgitation	218 (59.1%)
Bicuspid aortic valve	15 (4.1%)
Penn classification	
Penn A (no shock or malperfusion)	156 (42 %)
Penn B (malperfusion)	113 (31 %)
Penn C (shock)	37 (10%)
Penn BC (shock and malperfusion)	63 (17%)

Values are n (%) or mean ± standard deviation

Values are n (%) or mean ± standard deviation

Results

- Most patients were treated with a hemiarch procedure, followed by total arch replacement
- Postoperative complications occurred within anticipated ranges for AAD patients

Surgery	Total (n=369)
Extension of repair	
Isolated proximal repair	22 (6.0%)
Hemiarch replacement	206 (55.8%)
Arch replacement	134 (36.3%)
Other proximal repair	7 (1.9%)
Aortic valve replacement	59 (16.0%)
Aortic root replacement	66 (17.9%)
Cardiopulmonary bypass [minutes]	222±76
Cross-clamping [minutes]	124±48
Lowest temperature [°C]	23.4±4.1

Postoperative course	Total (n=369)		
Hospital stay [days]	14.7±11.2		
In hospital death	54 (14.6%)		
Rethoracotomy	41 (11.1%)		
Dialysis	66 (17.9%)		
Tracheotomy	26 (7.0%)		

Values are n (%) or mean ± standard deviation

Values are n (%) or mean ± standard deviation

Results: Transfusions and Coagulation Factors

		Total (n=369)	Penn A	Penn B	Penn C	Penn BC	p-value
			(n=156)	(n=113)	(n=37)	(n=63)	
pRBC	intraOP	3.99±4.15	3.08±2.67	3.37±3.26	5.89±4.99	6.25±6.35	<0.001
[250 ml units]	24h	1.31±2.56	0.76±1.58	1.16±1.90	1.90±2.68	2.94±4.66	<0.001
Platelets	intraOP	1.95±2.14	1.60±0.95	1.93±1.08	2.38±1.40	2.62±4.55	0.007
[250 ml units]	24h	0.19±0.71	0.06±0.32	0.14±0.55	0.16±0.58	0.72±1.43	<0.001
FFP	intraOP	2.22±3.60	1.47±2.71	2.29±3.42	2.73±3.91	3.67±5.00	<0.001
[250 ml units]	24h	1.82±3.54	1.05±2.10	1.49±2.98	3.26±5.05	3.96±5.47	<0.001
PCC [IU]	intraOP	2475±1590	2035±1174	2720±1462	2795±1552	2934±2331	<0.001
	24h	178±699	59±260	130±444	329±953	551±1413	<0.001
Fibrinogen [g]	intraOP	3.94±2.44	3.35±1.79	4.02±2.30	5.03±2.85	4.63±3.30	<0.001
	24h	0.35±1.28	0.17±0.76	0.30±1.04	1.10±2.69	0.53±1.46	0.002
Chest Drain [ml]	24h	786±614	681±507	739±485	841±542	1165±974	<0.001
Rethoracotomy		41 (11.1%)	12 (7.7%)	12 (10.6%)	5 (13.5%)	12 (19.0%)	0.106
In hospital death		54 (14.6%)	9 (5.8%)	9 (8.0%)	11 (29.7%)	25 (39.7%)	<0.001

pRBC: packed red blood cells, FFP: fresh frozen plasma, PCC: Prothrombin complex concentrate Values are n (%) or mean ± standard deviation

 Significantly more transfusion and coagulation products were used in patients with preoperative shock and/or malperfusion

Results: Multivariate linear regression

Dependent variable	Independent variable	coefficient	95% Cl	p-value
	BSA [m ²]	-2.40	-4.35 – -0.45	0.016
intraOP pRBC [250 ml units]	Penn C	1.84	0.49 – 3.19	0.008
	Penn BC	1.89	0.81 – 2.97	0.001
	CPB time [min]	0.03	0.02 – 0.03	<0.001
intraOP	Penn C	0.68	0.20 – 1.16	0.006
Platelets [250 ml units]	Penn BC	0.52	0.13 – 0.90	0.009
	Root replacement	0.42	0.05 – 0.79	0.025
intraOP FFP [250 ml units]	Penn BC	1.57	0.48 – 2.66	0.005
	BSA [m ²]	1178	276 – 2081	0.011
intraOP	Preoperative oral anticoagulation	569	33 – 1104	0.037
PCC [IU]	Penn B	501	78 – 924	0.020
	Penn BC	684	185 – 1183	0.007
	CPB time [min]	3.46	0.48 – 6.45	0.023
intraOP Fibrinogen [g]	BSA [m ²]	1.69	0.36 – 3.01	0.013
	Penn C	1.51	0.60 – 2.43	0.001
	Penn BC	0.96	0.23 – 1.70	0.010
	CPB time [min]	0.01	0.00 - 0.01	0.024

 Significant factors for transfusions and the substitution of coagulation factors are shock, the duration of cardiopulmonary bypass, root replacement, the patient's size, and the preoperative use of oral anticoagulation

Other tested variables did not contribute significantly

Conclusions

- Surgical repair for AAD remains major surgery requiring blood transfusions and coagulation factors in almost all patients
- The most important significant factors that necessitate transfusions and substitution of coagulation factors are shock, duration of cardiopulmonary bypass, and patient's size
- Other factors such as lowest temperature during hypothermic circulatory arrest, gender, age, or distal extent of the surgery were not associated with a higher need for transfusion and coagulation products
- With proper management taking the mentioned factors into account, acceptable rethoracotomy and chest drain rates can be achieved with good clinical outcome