Twenty-five years of open type a dissection surgery in 500 patients – Has a change in surgical technique led to a change in outcome?

Werner P*, Coti I*, Kuscu B, Angleitner P, Wiedemann D, Stelzmüller M, Mahr S, Laufer G, Zimpfer D, Ehrlich M

*Contributed equally

Department of Cardiac Surgery, Medical University of Vienna, Vienna Austria

Background

- Type A aortic dissection presents with a high mortality when left untreated and requires immediate surgical repair
- Continuous adaptions of surgical technique have been implemented, however, reported short term outcomes seemed to stagnate over the last decades
- We investigated operative mortality and adverse outcomes after surgery for type a dissection (ATAAD) over the course of 25 years span

Study Design

- Between 1998-2022, more than 500 patients underwent open surgical repair for type a dissection in a tertiary reference center.
- 500 patients (with sufficient documentation) were included in the retrospective single study cohort
- Retro- and prospective (telephone, family physician) follow up was performed
- Comparison between two surgical eras (Era I 1998-2009, Era II 2010-2022)
 will be performed via subgroup analysis

Endpoint Definitions

- Operative mortality (consisting of 30-day and in-hospital mortality)
- Major adverse outcome (defined after the Aortic Arch Surgery Group consensus statement by Yan et al)
 - Neurological System
 - Cardiovascular System
 - Respiratory System
 - Renal System
 - Gastrointestinal System
 - Other Systems

Yan TD, Tian DH, LeMaire SA, et al, International Aortic Arch Surgery Study Group. Standardizing clinical end points in aortic arch surgery: a consensus statement from the International Aortic Arch Surgery Study Group. Circulation. 2014 Apr 15;129(15):1610-6. doi: 10.1161/CIRCULATIONAHA.113.006421. PMID: 24733540.

Variables	Overall cohort (n=500)	1998-2010	2011-2022	
		(n=203)	(n=297)	p-value
Root procedure (498/500)				
Supracomissural repair	68.8% (344)	74.6% (151)	65% (193)	0.003
Selective Non-Coronary Sinus replacement	4.2% (21)	6% (12)	3% (9)	0.11
Composite valve graft replacement				
mechanical	15% (75)	14.9% (30)	15.2% (45)	0.95
biological	8.2% (41)	1.5% (3)	12.8% (38)	<0.001
Valve sparing root replacement	3.4% (17)	2.5% (5)	4% (12)	0.35
Arch procedure (497/500)				
Open distal/ Hemiarch	82.4% (412)	89.6% (180)	78.4% (232)	0.001
Partial arch	6.4% (32)	3.5% (7)	8.4% (25)	0.03
Total arch	5.4% (27)	5% (10)	5.7% (17)	0.71
Elephant trunk	0.8% (4)	1% (2)	0.7% (2)	0.67
Frozen elephant trunk	3.2% (16)	0	5.4% (16)	<0.001
none	1.2% (6)	1% (2)	1.4% (4)	0.72

	Overall	1998-2010	2011-2022	
Variables	cohort	(n=203)	(n=297)	p-value
	(n=500)			
Arterial cannulation (493/500)				
Ascending aorta	0.6% (3)	0	1% (3)	0.25
Aortic arch	1% (5)	0.5% (1)	1.4% (4)	0.45
Axillary artery	66.8% (334)	42.3% (85)	85.3% (249)	<0.001
Brachocephalic trunc	0.8% (4)	0.5% (1)	1% (3)	0.57
Femoral artery	29.2% (147)	56.7% (114)	11.2% (33)	<0.001
Cerebral perfusion (CP) (492/500)				
No CP	12.4% (62)	27.1% (54)	2.7% (8)	<0.001
Antegrade CP	73.6% (368)	43.2% (86)	96.2% (282)	<0.001
Retrograde CP	12.4% (62)	29.6% (59)	1% (3)	<0.001

Table 2: Procedural specifics stratified after time period

Results 1

- Operative Mortality in the overall cohort was 14.2% (n=71)
 (30 Day Mortality=11.8% [n=59], In-Hospital Mortality 14.2% [n=71])
- A multivariate regression analysis revealed age (OR 1.01, 95% CI 1.00-1.03) and cardiopulmonary bypass time (OR 1.004, 95% CI 1.00-1.01) as independent predictors of operative mortality (mode of cerebral perfusion or arterial cannulation were no predictors)

Results 2

- Surgical volume has significantly increased (46% increase) between surgical era I (1998-2010, n=203, age 58±14 years) and era II (2011-2022, n=297, age 60±14 years) from 203 to 297 cases
- Axillary artery cannulation (era I 42.3% vs era II 85.3%, p<0.001) and antegrade cerebral perfusion (era I 43.2% vs era II 96.2%, p<0.001) were performed more frequently in era II (2010-2022)
- No significant differences in operative mortality (era I 15.7% vs era II 14.2%, p=0.66) or neurological endpoints (era I 23.2% vs era II 28.3%, p=0.219) were observed between those periods

Conclusion

- Surgical technique for operative repair of ATAAD has undergone relevant changes with regards to performed procedures, cannulation sites and cerebral perfusion modes
- No statistically significant difference of operative mortality was observed between the first and second era of a 25-year time span
- A significant increase in surgical volume (146%) was observed between the first and the second period, which might reflect that nowadays more patients receive surgical treatment for ATAAD with steady operative outcomes