

Anatomical feasibility of EndoBentall strategies for management of acute type A aortic dissection

A.Vallée, G.Guimbretière, J.Guihaire, A.Guery, M.Gaillard, T.Le Houerou, A.Gaudin, R.Ramadan, Ph.Deleuze, B.Maurel, JC.Roussel, S.Ghostine, A.Vincentelli, F.Juthier, D.Fabre, J.Sobocinski, S.Haulon

Background

Acute type A aortic dissection (ATAAD) is a catastrophic condition with a perioperative mortality of 19.5-26%, and up to 45% in octogenarians. More than 10% of patients are rejected from surgery due to high-risk comorbidities.

Endobentall concept, has been proposed to incorporate the aortic valve, the coronary arteries and the proximal ascending aorta. However, its applicability to type A aortic dissections has not yet been studied except for a recent case report.

First-in-Human Endovascular Aortic Root Repair (Endo-Bentall) for Acute Type A Dissection

rided Ghoresettell, M.D. Dilyo Chahalli, MD, Aakasi Shahel, MD, Jakmann Kang, MD, Jaffery Hinch, MD; glin Tandi, MD, Dana McChaley, MD, Helkishi Shahelaku, MD, Anu Gupta, MD; Elik R. Straussell, MD; Samak Dahel, M dey S Taylord, MD; Shahab Toursavedich, MD Circulation American Heart @ Xsociation

Objectives

Assess the anatomical feasibility of total endovascular management of ATAAD with a dedicated aortic root endograft (Endobentall), and introduce a new endovascular anatomical classification for the aortic root and ascending aorta to facilitate comparison of future treatments and devices.

Materials and Methods

- Inclusion criteria : All consecutive patients treated for an acute Stanford type A aortic dissection between 2016 and 2020 with workable CT scan (High quality arterial phase and maximal thickness >1mm) in three French aortic centers retrospectively.
- Aortic measurements were assessed by one cardiovascular surgeon with a large experience in aortic endograft and TAVR, using pre-operative CT scans.
- Several aortic and coronary lengths and diameters were assessed. Aortic annulus dimensions and coronary height were studied.
- Entry tear location were reported based on our adapted aortic classification.

Dedicated Adapted Aortic Classification

PARIS

Zone -1 : Valsalva sinuses (R: right, L: left, NC: non coronary)

Zone 0.1 : "proximal landing zone", 1cm above the sinotubular junction

Zone 0.3 : "distal landing zone", 1cm proximal to the innominate artery

Zone 0.4 : aortic zone of the innominate artery ostium

Treatment concepts

 \bullet

Fenestrated Endobentall

- Sealing at the level of sino-tubular junction
- Perfused Valsalva sinuses

Branched Endobentall

Sealing in the coronary arteries

Excluded Valsalva sinuses

Treatment concepts

 One centimeter of sealing was considered to exclude the primary entry tear

 Aortic annulus sizing was based on TAVR measurements, size of the valve was selected on Sapiens 3 EDWARDS® and EvolutPro Medtronic® instructions for use

- Two subgroups were defined :

- "marginal group": 2mm were added to the instructions for use diameters to defined the aortic valve size in order to account for the fabric thickness of the endograft implanted in the annulus
- "extended group" : annular dimensions were considered in accordance with the possible overexpansion of TAVR devices. ^{(1),(2)}

(1) Mathur M et al, Overexpansion of the 29 mm SAPIEN 3 transcatheter heart valve in patients with large aortic annuli (area > 683 mm2): A case series. Catheter Cardiovasc Interv, 2018 (2) Sathananthan J et al, Overexpansion of the SAPIEN 3 Transcatheter Heart Valve: An Ex Vivo Bench Study. JACC Cardiovasc Interv 2018

Anatomic feasibility criteria

Fenestrated Endobentall :

- Aortic root dimensions fit with the instruction for use of the Sapiens 3 EDWARDS® and EvolutPro Medtronic®
- Coronary height >10mm
- Branched Endobentall :
 - Satisfied the criteria for Fenestrated Endobentall and left main coronary length was >5mm
 - Mandatory if Entry tear localized in zone 0.1 and -1

Results

Entry tear distribution in function of the aortic zones

- 250 CT scans for acute type A aortic dissection were reviewed and 116 were included for final analysis
- The primary entry tear was located in the aortic root (zone -1) in 9% of the patients and 31% in zone 0.1
- >80 % of the patients were eligible to an Edwards ® sapiens valve (84,5%¹ and 84%²) or a Medtronic ® Corevalve Evolut PRO (78%³ and 84%⁴)

¹ based on area derived mean diameter, ² based on aortic annulus area, ³ based on the perimeter, ⁴ based on the mean diameter

Anatomic feasibility

Cohort

Marginal group

Extended group

63.7% of the patients were eligible 69.8% of the patients were eligible for an Endobentall procedure

for an Endobentall procedure

73.3% of the patients were eligible for an Endobentall procedure

41.3% **Fenestrated** Endobentall

22.4% Branched Endobentall

45.7% **Fenestrated** Endobentall

24.1% **Branched** Endobentall

49.1% Fenestrated Endobentall

24.1% **Branched** Endobentall

PARIS

Anatomic feasibility exclusion criteria

● left main >5mm

• left main <5 mm

Otoo large annulus

Cloud of point representing the anatomical exclusion criteria of Endobentall feasibility

Conclusion

- In our study, 63.7% of patients with aortic type A dissections are deemed eligible to an "Endobentall repair", increasing to 73.3% when considering extended anatomical criteria
- The development of dedicated devices combining TAVR and branched or fenestrated endografts is needed to achieve a higher rate of applicability and be evaluated, prior to its application in routine clinical practice