Aortic Dissections after Transcatheter Aortic Valve Replacement

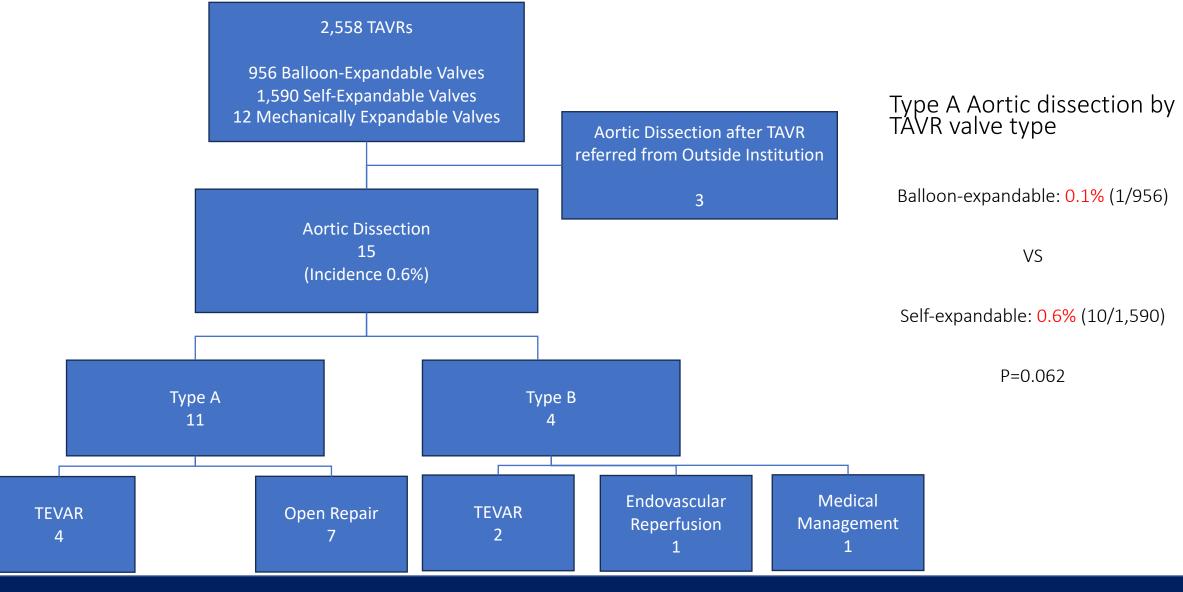
Tyler M Bauer, MD, David Williams, MD, Stanley Chetcuti, MD, P. Michael Grossman, MD, G, Michael Deeb, MD, Himanshu J. Patel, MD, Shinichi Fukuhara, MD

> Department of Cardiac Surgery University of Michigan Ann Arbor, USA

Introduction

- Incidence of Aortic Dissection after TAVR: 0.2 1.9%
 - Based solely on registry studies without granular data
 - No differentiation of type A or B dissection
- Characteristics & Management
 - Poorly understood (only successfully managed case reports published)

Langer NB, et al. Injuries to the Aorta, Aortic Annulus, and Left Ventricle During Transcatheter Aortic Valve Replacement: Management and Outcomes. Circ Cardiovasc Interv. 2017 Jan;10(1):e004735.



Objectives — Aortic Dissections and TAVR

- Describe the incidence, characteristics, management and outcomes of aortic dissections based on our 12-year TAVR experience
- Share lessons learned from this series

Cohort — Aortic Dissections and TAVR

Timing of Diagnosis and Interventions

	Type A 11	Type B 4		
Intraoperative:				
Pre-deployment	TEVAR (n=1)			
Post-deployment	TEVAR (n=2) Open Repair (n=2)	TEVAR (n=1) Endovascular Reperfusion (n=1) Medical Management (n=1)		
Post Discharge				
Less than 3 months	TEVAR (n=1) Open Repair (n=3)	TEVAR (n=1)		
Greater than 3 months	Open Repair (n=2)			
Department of Cardiac Surgery				

Demographics — Aortic Dissections and TAVR

Characteristics	N=15 (%)
Age (Years)	79.5 (IQR 72.3 – 90.5)
Female	6 (40.0%)
Diabetes	3 (20.0%)
Frailty	9 (60.0%)
Previous stroke	3 (20.0%)
Coronary artery disease	7 (46.6%)
Chronic kidney disease	6 (40.0%)
Dialysis	1 (6.7%)
Home O2 therapy	3 (20.0%)
STS-PROM (%)	8.5 (IQR 7.3 – 14.3)
Previous cardiovascular surgery	
SAVR	2 (13.3%)
Aortic root repair	2 (13.3%)
Ascending and partial aortic arch repair	1 (6.7%)
CABG	2 (13.3%)
Endovascular abdominal aortic repair	3 (20.0%)

Characterized by

- High-risk
- Frail
- Multiple comorbidities

Aortic Characteristics: Type A Group (n=11)

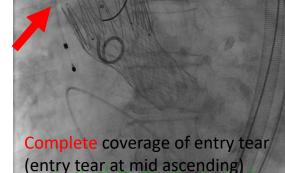
Patient	Age Gender	Aortic risk factors	Associated aortic complications	Intimal tear location	Aortic dissection mechanism	Dx timing (Dx imaging)
1	86 M	 h/o ascending IMH Moderately dilated ascending aorta (46 mm) Horizontal aorta 	Cerebral malperfusion	STJ (greater curvature)	TAVR valve deployment	Post-deployment (aortography, dampened right radial pressure)
2	79 F	 Mildly dilated ascending aorta (43 mm) Horizontal aorta Immunosuppression 	Cerebral malperfusion, hemopericardium	Mid ascending (greater curvature)	TAVR device delivery system passage	Post-deployment (aortography, dampened right radial pressure)
3	71 F	 Moderately dilated ascending aorta (45 mm) 	None	Root (greater curvature)	TAVR device delivery system passage	Pre-deployment (pre-deployment aortography)
4	93 F	 Moderately dilated ascending aorta (45 mm) Horizontal aorta 	None	STJ (greater curvature)	Distal TAVR stent frame contact to the aorta	1.5 months post-TAVR (CTA)
5	72 M	 Mildly dilated ascending aorta (43 mm) Intimal plaque at STJ 	Large pseudoaneurysm	STJ (greater curvature)	Distal TAVR stent frame contact to the aorta	Late (CTA)
6	85 F	- Horizontal aorta	None	STJ (greater curvature)	Snaring for distal migration	2 days post-TAVR (CTA)
7	25 M	Large aortic root (47 mm)Horizontal aorta	None	STJ (greater curvature)	Repeat deployment and recapturing	Late (CTA)
8	71 M	Horizontal aortaElongated aorta	None	STJ (greater curvature)	Repeat deployment and recapturing	10 days post-TAVR (CTA)
9	78 F	 Moderately dilated ascending aorta (48 mm) 	Cerebral malperfusion	STJ (greater curvature)	Retrograde migration requiring 2 nd TAVR	Late (CTA)
10	78 M	 Moderately dilated ascending aorta (45 mm) 	Rupture Hemopericardium	Root (greater curvature)	TAVR valve deployment	Post-deployment (echo)
11	76 M	- Infrarenal aortic aneurysm	None	Root (greater curvature)	Repeat deployment and recapturing	Post-deployment (echo)

All patients had ascending aortic dilatation/horizontal aorta/Entry tear all located along greater curvature

Interventions and Outcomes: Type A Group (n=11)

Patient	Management	Dx timing Entry tear location	Procedural success	Outcomes
1	TEVAR	Post-TAVR deployment STJ	No (incomplete entry tear coverage)	Death on POD#2 (sudden cardiac arrest)
2	TEVAR, innominate artery stenting	Post-TAVR deployment Mid ascending	Yes	Death on POD#5 (massive stroke)
3	TEVAR	Pre-TAVR deployment Root	Yes	Death on POD#5 (sudden cardiac arrest)
4	TEVAR	Post-TAVR deployment (1.5 months) STJ	No (incomplete entry tear coverage)	Death on POD#18 (palliative care)
5	Root & ascending repair	Late STJ	Yes	Alive (3 years)
6	Ascending & hemiarch repair	Post-discharge (2 days) STJ	Yes	Alive (2 years)
7	Root & ascending repair	Late STJ	Yes	Alive (7 months)
8	Ascending repair	Post-discharge (10 days) STJ	Yes	Alive (4 months)
9	Ascending & hemiarch repair	Late STJ	Yes	Alive (4 months)
10	Root & ascending repair	Post-TAVR deployment Root	Yes	Alive (1 month)
11	Root & ascending repair	Post-TAVR deployment STJ	Yes	Alive

TEVAR, thoracic endovascular aortic repair; POD, postoperative day


Lessons Learned: Type A Group

- All had ascending aorta pathology at baseline
- Most patients demonstrated unfavorable features for conservative management (malperfusion, hemopericardium, proximal entry tears)
- Entry tears mostly located at proximal aorta (STJ or more proximal) always along greater curvature
- Presence of TAVR valve and associated proximal landing difficulty (TEVAR-in-TAVR configuration, figures)
- Lack of dedicated CTA to assess TEVAR feasibility for immediate TEVAR management
- Lack of dedicated aortic prosthesis for ascending TEVAR
- Open repair is highly warranted if patients are surgical candidates

kimal tion, ibility ending Complete coverage of entry

Complete coverage of entry tear at STJ (Aortic dissection recognized prior to TAVR implantation)

TAVR-in-TEVAR (n=1)

TEVAR-in-TAVR (n=3)

Rigit

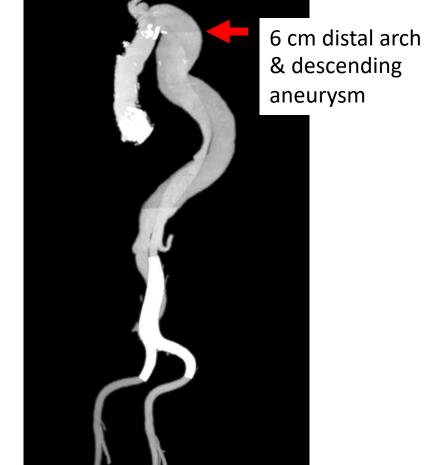
Incomplete coverage of entry tear (entry tear at STJ)

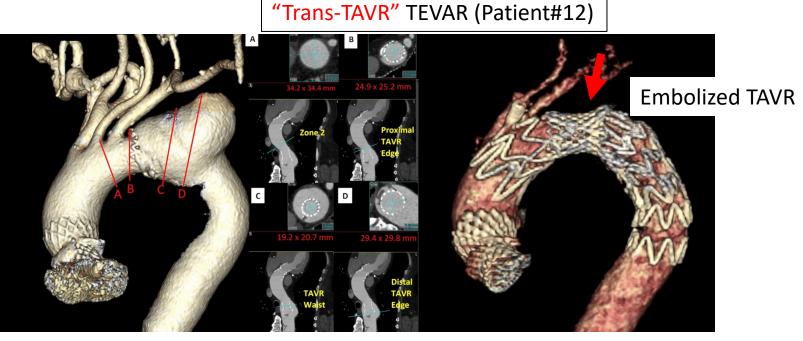
Aortic Characteristics: Type B Group (n=4)

Pati ent	Age, gender	Aortic risk factors	Associated aortic complications	Intimal tear location	Aortic dissection mechanism	Timing of Dx (imaging)
12	80 <i>,</i> M	Ascending aortic dilatation (43 mm)	Rapidly growing aneurysm (3.5 cm → 7.4 cm/3months), leg malperfusion	Zone 3	Intimal tear from embolized & snared TAVR stent frame	3 months (CTA)
13	92, F	Severe aortic calcification	Retrograde type A aortic dissection	Zone 3	TAVR device delivery system passage	Post-deployment (completion aortography)
14	73 <i>,</i> M	Severe aortic tortuosity	Leg malperfusion	Zone 3	TAVR device delivery system passage	Post-deployment (lack of femoral pulse)
15	86, M	Severe aortic tortuosity, ascending aortic aneurysm (55 mm)	Renal malperfusion	Zone 3	Repetitive TAVR device delivery system passage (aorta too long and the device did not reach the valve)	Pre-deployment (aortography)

Outcomes: Type B Group (n=4)

Patient	Management	Procedural success	Outcomes
12	Zone 1 trans-embolized TAVR TEVAR using laser aortic septotomy	Yes	Alive, positive aortic remodeling (2 years)
13	Zone 2 TEVAR	Yes	Alive, positive aortic remodeling (4 years)
14	Endovascular reperfusion using dissection flap fenestration/true lumen & bilateral iliac stenting (No TEVAR)	Yes	Alive for 8 years, died of aortic rupture (known 6 cm aneurysm)
15	Medical management	N/A	Died of end-organ malperfusion and multi-organ failure


Both TEVAR cases resulted in positive aortic remodeling


Lessons Learned: Type B Group

• Favorable outcomes with TEVAR

Fenestration & stent alone without TEVAR (Patient#14)

- TEVAR and entry coverage at acute stage may be highly warranted
 - Patient#12 with chronic dissection required a complex TEVAR (Figure below)
 - patient#14 without TEVAR developed large aortic aneurysm (Figure right) and eventually died of rupture

Summary — Aortic Dissections and TAVR

- Underlying aortic pathology (dilated aorta) +/- catheter manipulations associated with implantation difficulty (horizontal aorta) are the main mechanism of aortic dissection.
- Preoperative aorta assessment and avoiding TAVR in patients with such characteristics can make the incidence almost zero (currently 0.6%).
- Open repair is preferred to TEVAR for type A aortic dissection. Immediate TEVAR poses unique challenges (TEVAR-in-TAVR).
- TEVAR for type B aortic dissection may be highly warranted at acute phase.

