FEASIBILITY OF ENDOVASCULAR AORTIC ARCH REPAIR AFTER HEMIARCH REPLACEMENT FOR ACUTE TYPE A AORTIC DISSECTION

Srihari K. Lella, MD¹, Jordan P. Bloom, MD MPH², Thoralf M. Sundt, III, MD², Motahar Hosseini, MD², Serguei Melnitchouk, MD MPH², Sunita D. Srivastava, MD¹, Jahan Mohebali, MD MPH¹, Matthew J. Eagleton, MD¹, and Arminder S. Jassar, MBBS FRCS² ¹Division of Vascular and Endovascular Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA ²Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA

Background / Study Objective

- Branched arch endografts provide a novel treatment strategy for patients with aneurysmal degeneration of residual DeBakey type I dissection after initial ascending aortic replacement
- We assessed the treatment feasibility of three investigational arch branch endografts for patients who have undergone hemiarch replacement for an acute type A dissection

Review of Institutional database of patients with Acute type A Aortic dissection with intent to identify 50 consecutive patients suitable for imaging review

Methods I

- CT scans of the 50 patients in the ۲ final study cohort were analyzed for suitability for treatment with:
 - **Cook Medical Zenith Arch Branched Device** (IDE Study)

2. Gore TAG Thoracic Branch **Endoprosthesis** (clinical trial)

Terumo Relay Dual Branch 3. **Device** (clinical trial)

Cook Medical

Zenith Arch Branched Device

W.L. Gore & Associates

TAG Thoracic Branch Endoprosthesis

Terumo Aortic

Relay Plus Double-Branched Device

Methods II

- Proximal landing zone anatomy i.e. ascending aortic (AA) and great vessel (GV) landing zones, were evaluated on postoperative CTAs
- Suitability of distal landing zone in the descending aorta was not evaluated
- Measurements were conducted using 3D imaging software and compared against the manufacturer recommended sizing criteria (IFU) for each of the three devices
- Criteria for potential exclusion for the use of each endograft was identified for each patient

Methods III

- Reasons for exclusion were divided into:
 - <u>Patient factors</u> (non-modifiable at the initial hemiarch operation): BCT diameter, BCT length, dissection into BCT, and connective tissue disorder.
 - Endovascular treatment for these patients will require new device design, or additional treatment considerations
 - <u>Technical factors</u> (modifiable at initial operation): Mechanical valve placement, Ascending aortic graft diameter and length
 - These patients could potentially be candidates for endovascular repair with appropriate planning at the initial operation

Results 1

- Of patients that met inclusion criteria, 42 (84%) patients could be treated by at least one of the three devices, while 8 patients (16%) were excluded from all three devices and would not be candidates for endovascular repair
 - 16 (32%) patients were candidates for all three devices
 - Additional 8 (16%) patients were candidates for two devices

Reason for Patient Exclusion from Individual Branched Arch Endograft based on landing zone anatomy				
on postoperative CT (n=50)				
	Cook	Gore	Terumo	
Ascending aortic (neck) diameter too big or small	5 (10%)	4 (8%)	12 (24%)	
Inadequate ascending aortic length	15 (30%)	4 (8%)	19 (38%)	
Brachiocephalic trunk diameter too big or small	0	7 (14%)	1 (2%)	
Inadequate Brachiocephalic trunk length	0	10 (20%)	8 (16%)	
Left common carotid artery too small	0	0	1 (2%)	

Results 2

 Overall non-candidacy rates for all screened pts (n=71) were 40 (56.3%) for Cook, 39 (54.9%) for Gore, and 52 (73.2%) for Terumo

Patient vs. Technical factors for exclusion for endovascular treatment			
	Patient related factors	Technical factors	
	(non-modifiable)	(Modifiable)	
Cook	14 (19.7%)	26 (36.6%)	
Gore	28 (39.4%)	15 (21.1%)	
Terumo	24 (33.8%)	31 (43.7%)	

Technical (modifiable) factors were the reason for 21 - 44% of patients being excluded from endovascular treatment

Conclusion

- Despite the availability of multiple branched endovascular devices, a significant number of pts may be unsuitable for subsequent endoarch repair
- Both patient-related factors and technical factors contributed to pts being excluded; awareness of anatomic inclusion criteria for arch endografts and modification of surgical technique for creation of a suitable landing zone at initial operation may increase likelihood of subsequent endovascular repair
- These data may inform changes in device design to accommodate a more variable patient anatomy
- In patients with unsuitable branch vessel anatomy on preoperative CT scan, a more extensive arch reconstruction may be considered to facilitate subsequent endovascular repair.