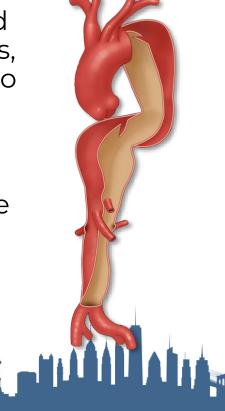
Indications, Safety, and Effectiveness of Transcatheter Electrosurgical Septotomy During Endovascular Repair of Aortic Dissection

Lucas Ruiter Kanamori, Andres Figueroa, Thomas Mesnard, Titia Sulzer, Dora Babocs, Aleem Mirza, Mirza Baig, Mira Tanenbaum, Jose Eduardo Costa, Marilisa Soto, Carlos Timaran, Ying Huang and Gustavo S. Oderich

Department of Surgery, Cardiothoracic and Vascular Surgery Division of Vascular and Endovascular Surgery

Disclosures


• Gustavo S. Oderich

- Consulting, research grants, scientific advisory board WL Gore, Cook Medical Inc., GE Healthcare and Centerline Biomedical
- Investigational use of devices Cook Fenestrated and Branched Grafts
- Carlos Timaran
 - Consulting, research grants, scientific advisory board WL Gore, Cook Medical Inc., and Philips Medical Systems
 - Investigational use of devices
 Cook Fenestrated and Branched Grafts
- Remaining authors
 - No disclosures

Background

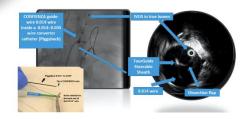
- Endovascular repair is the most frequently used treatment option for post-dissection aneurysms, with lower morbidity and mortality compared to open surgical repair
- Challenges include inability to seal across dissected segments, rigid lamella with compressed true lumen, vessel origin from false lumen and multiple reentrances
- Partial false lumen thrombosis with persistent flow is associated with progressive aneurysm enlargement and decreased survival¹

¹Tsai et al. N Eng J Med 2007

Transcatheter electrosurgery

2015

Structural heart disease: BASILICA and LAMPOON techniques (Khan et al. JACC 2018)


2019

 Chronic dissection:
 Transcatheter electrosurgical fenestration

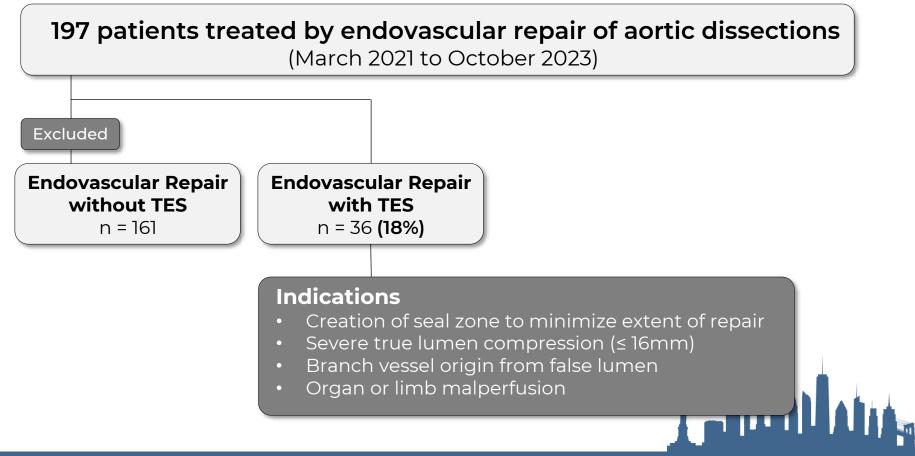
(**Kabbani** L et al. JVSCI 2023)

Novel technique to fenestrate an aortic dissection flap using electrocautery

Loay Kabbani, MD, Marvin Eng, MD, Kevin Onofrey, MD, Mitchell Weaver, MD, and Timothy Nypaver, MD, Detroit, MI

Transcatheter electrosurgical septotomy (TES)

• To describe the indications, feasibility, safety and effectiveness of transcatheter electrosurgical septotomy (TES) as an adjunct during endovascular repair of aortic dissections


¹Lombardi et al. J Vasc Surg 2020 and ²Oderich et al. J Vasc Surg 2020

Methods

- Retrospective review of consecutive patients treated by endovascular repair of acute, subacute or chronic aortic dissections with adjunctive TES in two academic centers from March 2021 to October 2023
- SVS/STS reporting standards for management of aortic dissections¹ and aneurysms involving the renal-mesenteric arteries²
- End-points:
 - Technical success (controlled septotomy with no dislodgement of lamella, branch occlusion, arterial disruption)
 - Mortality, major adverse events and secondary interventions

¹Lombardi et al. J Vasc Surg 2020 and ²Oderich et al. J Vasc Surg 2020

AATS AORTIC SYMPOSIUM

Patient characteristics

	n = 36	Percent or IQR
Age (median, years)	61.5	55 – 72.5
Male sex	30	83
BMI (median, Kg/m²)	31	27 - 34
Hypertension	33	92
Cigarette smoking history	17	47
Chronic Kidney Disease stage III-IV	10	28
Coronary artery disease	9	25
Congestive heart failure	7	19
Stroke/TIA	7	19
Chronic Pulmonary Disease	4	11
American Society of Anesthesiology ≥ III	36	100

Aortic history

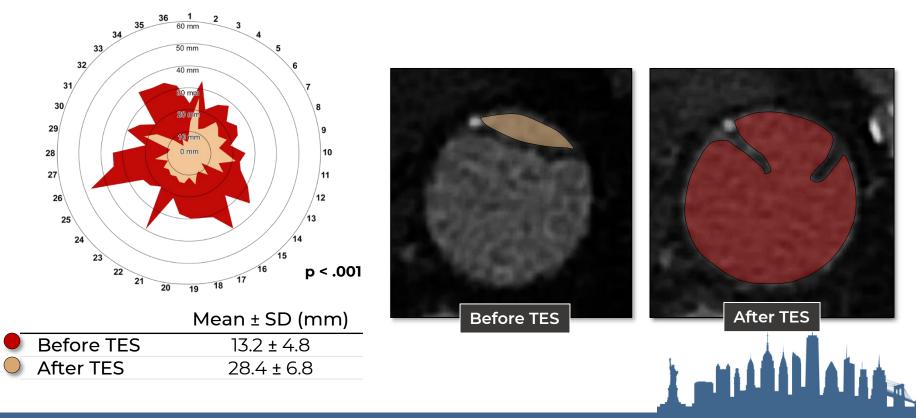
	n = 36	Percent or IQR
Acute complicated dissection	3	8
Chronic post-dissection aneurysm	32	89
Aortic arch (Zone 0-3)	7	19
Thoracic aorta (Zone 4-5)	7	19
Thoracoabdominal aorta (Zone 4-9)	19	53
Infrarenal aorta and iliacs (Zone 9-11)	3	8
Maximum aortic diameter (mm)	60	52 - 70
Prior aortic repair	27	75
Prior open surgical repair	23	64
Prior endovascular aortic repair	15	42
Symptomatic/ ruptured aneurysm	10	28
Family History of aortic disease	3	8

- -

Extent of repair and procedural data

	n = 36	Percent or Mean
Arch branch stent graft	7	19
TEVAR (±Petticoat)	8	22
TAAA FB-EVAR	18	50
EVAR	3	8
Procedural data	11	31
Total operating time (min, mean ± SD)		335 ± 22
Total endovascular time (min, mean ± SD)		248 ± 162
Total fluoroscopy time (min, mean ± SD)		102 ± 67
Total contrast volume (ml, mean ± SD)		177 ± 56
Total Cumulative Air Kerma (Gy, mean ± SD)	36	2.0 ± 1.5

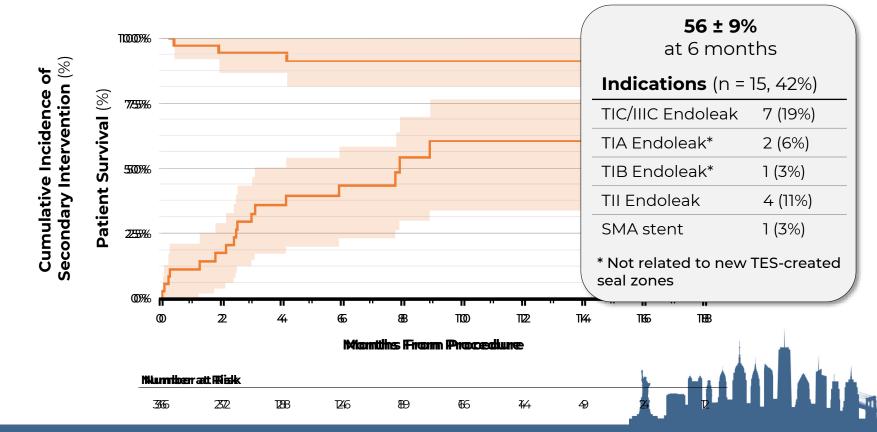
TES indication, extent and technical success


	70	0/	
	n = 36	%	
Indications			
True lumen compression (≤ 16mm)	28	78	
Target artery from different lumen	19	53	
Creation of proximal or distal landing zone	12	33	
Organ or limb malperfusion	4	11	
Technical success			
All patients (n = 36)	33	92	
Chronic dissections (n = 33)	32	97	
Acute dissections ($n = 3$)]	33	
Reasons for technical failure			
Dislodgement of dissection lamella, 2 (acute dissection)			
	.• 、	-	

Inadvertent SMA dissection, 1 (chronic dissection)

No arterial disruption or rupture

Aortic working lumen diameter


AATS AORTIC SYMPOSIUM

30 day outcomes

	n = 36	Percent or IQR
Mortality	1	3
Major adverse events	3	8
Acute Kidney Injury	1	3
Major stroke	1	3
Respiratory failure	1	3
Any spinal cord injury	3	8
Grade 1 (sensory only)	1	3
Grade 2 (paraparesis)	2	6
Grade 3 (paraplegia)	0	0

Secondary intervention Patient survival

AATS AORTIC SYMPOSIUM

Conclusions

- TES should be considered in patients with chronic dissections and severe true lumen compression, suboptimal landing zones or target vessels with origin from separate lumen
- In this setting, the technique is safe and effective with no loss of target artery, arterial disruption or dislodgement of lamella in this preliminary experience
- We do not recommend its use in patients with acute dissections due to high risk of dislodgement of lamella
- There was a high reintervention rate, which underscores the high complexity of these cases
- Longer follow up is needed to assess durability of newly created landing zones