Optimal eGFR Cutoffs for risk of Death or Dialysis after Open and Endovascular Abdominal Aortic Aneurysm Repair

Elisa Caron, MD^{1,2}; Sai Divya Yadavalli, MD¹; Roger B. Davis, ScD¹; Mark Conrad, MD²; Virendra Patel, MD³; Marc L. Schermerhorn, MD¹

1 Beth Israel Deaconess Medical Center 2. St Elizabeth's Medical Center

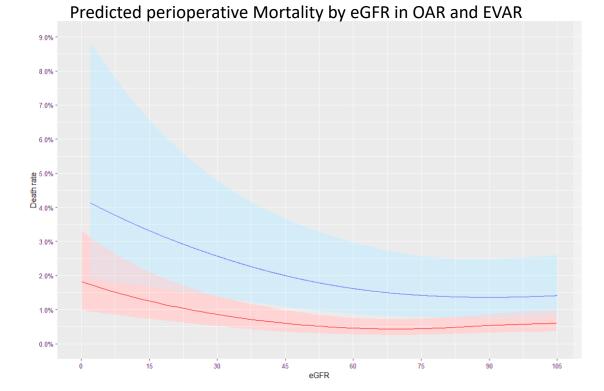
3.New York Presbyterian/Columbia University Medical Center.

Introduction

- Chronic kidney disease (CKD) is known to increase morbidity and mortality-for both open and endovascular repair of AAA.
- Most risk prediction models use a binary classification of estimated glomerular filtration rate (eGFR) < 60ml/min/1.73m2

Objectives

 Determine the optimal eGFR cutoff for risk stratification and modeling


Methods

- Vascular Quality Initiative databases for Open and Endovascular aneurysm repair from 2013-2023
- Patients with intact, first-time repair were included
- 56462 EVAR patients and 8070 OAR
- Divided into cohorts based on eGFR
 (≥60, 45-59, 30-44, <30, and preop dialysis)
- Linear regression analysis were used to compare perioperative mortality and permanent dialysis
- A Linear Regression model with a restricted cubic spline configuration was used to demonstrate the continuous relationship between eGFR and predicted perioperative mortality

Tables & Figures

Perioperative Death and permanent HD requirements following EVAR and OAR								
Perioperative mortality	EVAR				OAR			
eGFR	Rate	aOR ¹	95% CI ¹	p-value	Rate	aOR¹	95% CI ¹	p-value
<u>></u> 60	0.8%	ref	ref	ref	3.1%	ref	ref	ref
45-59	1.0%	1.01	0.79, 1.28	>0.9	4.9%	1.1	0.81, 1.49	0.5
30-44	1.7%	1.35	1.05, 1.72	0.015	6.6%	1.3	0.92, 1.81	0.12
<30	3.4%	2.3	1.78, 2.97	<0.001	11.5%	2.26	1.54, 3.25	<0.001
HD	4.5%	3.29	2.05, 5.07	<0.001	11.1%	3.67	1.03, 10.2	0.023
Permanent HD								
<u>></u> 60	0.1%	ref	ref	ref	0.8%	ref	ref	ref
45-59	0.1%	1.09	0.39, 2.58	0.9	1.3%	1.49	0.82, 2.61	0.2
30-44	0.3%	3.59	1.73, 7.24	<0.001	1.1%	1.18	0.53, 2.39	0.7
<30	1.5%	18.1	10.1, 33.1	<0.001	4.2%	4.14	2.15, 7.62	<0.001

for age, sex, hypertension, diabetes, COPD, CHF, Anemia, smoking, and medication use: ASA, statin, Beta blocker, RB

Results

- Compared to patients with eGFR ≥60, patients with eGRF 45-59 had similar adjusted odds of mortality for both OAR and EVAR
- In both EVAR and OAR 30-35% increase in the odds of mortality for those with eGFR 30-44
- Similar trend for permanent HD requirement

Conclusions

 Rather than a binary eGFR cutoff of <60 to stratify patient risk after AAA repair, a better understanding of perioperative risk may be achieved by stratifying into 5 groups (<u>></u>60m, 45-59, 30-44, and <30, and preop dialysis)

Acknowledgements

Corresponding Author:
Marc L. Schermerhorn, MD
Beth Israel Deaconess Medical Center
mscherm@bidmc.harvard.edu

Funding from the Harvard-Longwood Research Training in Vascular Surgery NIH T32 Grant 5T32HL007734-30