Robotic Vascular Surgery: Current Technologies and Challenges

Keyvon Rashidi, BS^[1], Charudatta Bavare, MD, MPH, FACS^[2], Maham Rahimi, MD, PhD, RPVI^[2] ^[1]School of Engineering Medicine, Texas A&M University, Houston, TX 77030

^[2] Department of Cardiovascular Surgery, Houston Methodist Hospital, Houston, TX.

Background

Robotic vascular surgery has not been widely adopted due to the lack of dedicated training pathways, increased operative times, and the lack of suitable instruments for quick control in case of bleeding. This review identifies current robotic vascular technologies, technologies that can be translated to robotic vascular surgery, and upcoming devices showing promise in the field of robotic vascular surgery.

Methods

PubMed, Google Scholar, and Scopus were queried using various combinations of terms pertaining to robotic vascular surgery. Studies not published in full, editorials, and articles not written in English were excluded from consideration.

Figure 1

- A. Klein Robotic Bulldog Clamp Modified from ⁹
- B. REBOA catheter Created with BioRender.com
- c. Rummel Tourniquet (white arrow) Modified from 10

	Koodito		
Device	Product Status	Advantages	
Robotic Bulldog Clamp ¹	Current Robotic Vascular Technology	• Small • Reusable	Partial occluClamping for
Rummel Tourniquet ²	Current Robotic Vascular Technology	• No reported complications in IVC- Thrombectomy	• Use is limite
Chitwood Clamp ³	Current Robotic Vascular Technology	 Unobstructed surgical field visualization Minimizes the chance suture entanglement Allows for adjustment of clamping force 	Risk of perij cross clamp
Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA) ⁴⁻⁶	Potential Robotic Adaptations	 Rapidly deployable Causes less vessel damage than cross-clamping 	Risk of aort Challenges
Flexible End Effector Surgical Devices ⁷	Upcoming Technology	• Greater control via increased degrees of freedom	Pending rese Has not bee Limited stude
Magnetically Actuated Endoscopic Devices ⁸	Upcoming Technology	 Can interface with surgical robots to perform endovascular procedures robotically Can be less invasive than laparoscopy 	

Conclusion

Advancements in robotically deployed clamps, aortic occlusion devices, and end-effector robotic devices hold promise for enhancing surgical interventions. Intraoperative vascular injuries are rare; nevertheless, when they do happen, large vessel control is difficult with the currently available robotic instruments. Technologies that require undocking of the surgical robot present barriers to using them in robotic vascular procedures. Hence, addressing the limitations and potential complications of the use of these devices is essential for safe implementation and continued progress.

2. 3. invasive cardiac surgery. Personal experience. G Chir. 2013;34(9-10):278-279. during robotic surgery. J Robotic Surg. 2020;14(3):473-477. doi:10.1007/s11701-019-01011-3 018-0181-6 non-compressible abdominal hemorrhage. Transfusion. 2022;62(Suppl 1):S313-S322. doi:10.1111/trf.16961 Actuators. 2022;11(8):206. doi:10.3390/act11080206 Rev Biomed Eng. 2016;9:66-78. doi:10.1109/RBME.2016.2521818 bulldog clamps. JSLS. 2011;15(4):520-526. doi:10.4293/108680811X13176785204274 10.

novice robotic surgeons. Korean J Urol. 2012;53(12):879-882. doi:10.4111/kju.2012.53.12.879

Results

More info: keyvon@tamu.edu

Disadvantages

usion due to lower clamping force orce is sensitive to positioning

ed to small and noncalcified arteries

pheral ischemia and reperfusion injury from aortic oing

tic perforation, rupture, and peripheral ischemia associated with C-arm for fluoroscopic guidance

earch and development n FDA cleared dies proving efficacy (due to its infancy)

References

- Tryon D, Myklak K, Alsyouf M, et al. Renal Vascular Clamp Placement: A Potential Cause of Incomplete Hilar Control during Partial Nephrectomy. Journal of Urology. 2016;195(3):756-762. doi:10.1016/j.juro.2015.09.080
- Pulford C, Keating K, Rohloff M, et al. Robotic-assisted nephrectomy with level II IVC thrombectomy using Rummel Tourniquets. Int Braz J Urol. 2022;48(1):196-197. doi:10.1590/S1677-5538.IBJU.2021.0393
 - Sansone F. Ceresa F. Patanè F. Transcutaneous insertion of the Chitwood® clamp in case of minimally
 - England EC, Spear CR, Huang DD, et al. REBOA as a rescue strategy for catastrophic vascular injury
- Ribeiro Junior MAF, Feng CYD, Nguyen ATM, et al. The complications associated with Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA). World Journal of Emergency Surgery. 2018;13(1):20. doi:10.1186/s13017-
 - McCracken BM, Ward KR, Tiba MH. A review of two emerging technologies for pre-hospital treatment of
 - Lu X, Wang C, Jin X, Li J. A Flexible Surgical Instrument for Robot-Assisted Minimally Invasive Surgery
 - Leong F, Garbin N, Natali CD, et al. Magnetic Surgical Instruments for Robotic Abdominal Surgery. IEEE
 - Sukumar S, Petros F, Mander N, Chen R, Menon M, Rogers CG. Robotic partial nephrectomy using robotic
 - Lee JY, Mucksavage P. Robotic radical nephrectomy with vena caval tumor thrombectomy: experience of