

Determining risk factors associated with failure of best medical therapy in Carotid Stenosis

Elisa Caron, MD^{1,3,}; Randall A. Bloch, MD¹; Stephen B. Caron, BS²; Katie E. Shean, MD¹; Scott G. Prushik, MD¹; Marc L. Schermerhorn, MD³; Mark F. Conrad, MD¹

1. St Elizabeth's Medical Center 2. Boston University 3. Beth Israel Deaconess Medical Center

Introduction

- There is level 1 evidence that supports Carotid Endarterectomy (CEA) for the prevention of stroke in patients with severe carotid stenosis.
- A recent meta-analysis of statin trials concluded that the risk of stroke in patients taking statins is so low that most patients should be managed medically.
- However, patients continue to present with carotid related Stroke or TIA despite medical therapy.

Objectives

• The goal of this study is to determine which risk factors are associated with failure of medical therapy.

Methods

- All patients who underwent carotid revascularization (CEA or TCAR) from 2017-2021
- Patients were then stratified by symptomatic status.
- BMT included antiplatelet therapy, a statin and smoking cessation.
- Multivariable logistic regression was used to evaluate the association between compliance with best medical therapy and the odds of symptomatic presentation

	Tables & Figures			
Baseline Characteristics			Multivariable	
Presentation	Asymptomatic	Symptomatic	P-value	Characteristic
	(N=161)	(N=79)		
Age (Median [IQR])	73.0 [52.0, 91.0]	73.0 [49.0, 90.0]	0.705	Best Medical Th
Sex				Age
Male	108 (67.1%)	43 (54.4%)	0.067	Sex
Female	53 (32.9%)	36 (45.6%)		Male
Race				
Other	7 (4.3%)	10 (12.7%)	0.033	Female
White	154 (95.7%)	69 (87.3%)		Race
BMI Category				Other
Underweight	5 (3.1%)	3 (3.8%)	0.925	White
Overweight	75 (46.6%)	36 (45.6%)		
Obese	36 (22.4%)	21 (26.6%)		Prior CHF
Morbidly Obese	6 (3.7%)	3 (3.8%)		Prior Hypertensi
Prior Hypertension	142 (88.2%)	67 (84.8%)	0.532	Prior Diabotos
Prior Diabetes	54 (33.5%)	28 (35.4%)	0.779	FIIOI Diabetes
Prior COPD	30 (18.6%)	15 (19.0%)	1	Prior COPD
Prior CAD	50 (31.1%)	17 (21.5%)	0.13	CAD
Prior Dialysis	5 (3.1%)	0 (0%)	0.169	Prior Maior Am
Prior CHF	14 (8.7%)	8 (10.1%)	0.829	
Prior Arterial Procedure	39 (24.2%)	9 (11.4%)	0.023	Prior Arterial
Prior Major Amputation	17 (10.6%)	16 (20.3%)	0.057	Intervention
Prior CABG or PCI	73 (45.3%)	29 (36.7%)	0.219	Prior CABG or P
Insurance				1 OR = Odds Ratio, Cl
Medicare	100 (62.1%)	45 (57.0%)	0.433	
Medicaid	8 (5.0%)	7 (8.9%)		
Private	51 (31,7%)	27 (34.2%)		

Predictors of Symptomatic Presentation OR1 95% CI1 p-value 0.004 0.4 0.21, 0.74 1.02 0.98, 1.05 0.4 1.58 0.84.2.95 0.2 0.07, 0.75 0.017 0.24 0.39, 3.35 0.8 1.17 0.26, 1.57 0.3 0.63 1.45 0.65, 3.24 0.4 0.50, 2.42 0.8 1.12 0.33, 1.84 0.6 0.78 0.002 3.98 1.68.9.67 0.008 0.11, 0.70 0.3 0.68 0.28, 1.64 0.4

- ٠ procedure.
- presentation.
- presentation
- stenosis.
- ٠ screening.

Corresponding Author: Mark F. Conrad, MD, FACS St Elizabeth's Medical Center

Results

There were 240 patients, 79 (33%) symptomatic and 161 (67% asymptomatic).

Of these, 52% were on BMT prior to the index

BMT was protective against symptomatic

A history of a prior major amputation was

associated with increased odds of stroke or TIA However, a history of prior vascular

intervention reduced the odds of symptomatic

Conclusions

There is a continued role for CEA in the management of severe carotid artery

While this sample was small it suggests that patients with vascular disease in other areas would likely benefit from

Acknowledgements

E-mail: mark.conrad2@steward.org

